相关习题
 0  245228  245236  245242  245246  245252  245254  245258  245264  245266  245272  245278  245282  245284  245288  245294  245296  245302  245306  245308  245312  245314  245318  245320  245322  245323  245324  245326  245327  245328  245330  245332  245336  245338  245342  245344  245348  245354  245356  245362  245366  245368  245372  245378  245384  245386  245392  245396  245398  245404  245408  245414  245422  266669 

科目: 来源: 题型:解答题

19.函数f(x)=sin(x+φ)-2sinφcosx的最大值为1.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图⊙O1与⊙O2相交于A、B两点,过A点的直线分别与⊙O1、⊙O2相文于C、D两点,以C、D为切点分别作两圆的切线相交于点E.
(Ⅰ)若EA的延长线与⊙O1交于点M,证明切割线定理:EC2=EA•EM
(Ⅱ)证明:E、C、B、D四点共圆.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知e为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率,点(1,e)和$(e\;,\frac{{\sqrt{3}}}{2})$都在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点M(2,0)的直线l与椭圆相交于A、B点,在直线x+y-1=0存在点P,使得$\overrightarrow{OA}+\overrightarrow{OB}=\frac{4}{3}\overrightarrow{OP}$(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在空间几何体ABCDE中,平面ACD⊥平面ABC,△ABC和△ACD都是边长为2的等边三角形,BE=2,点E在平面ABC内的射影落在∠ABC的平分线上,若DE∥平面ABC.
(Ⅰ)求DE边的长度;
(Ⅱ)求棱锥A-CDE的体积与棱锥A-BCE的体积的比值.

查看答案和解析>>

科目: 来源: 题型:选择题

15.下列命题中,真命题的是(  )
A.?x0∈R,ex0≤0B.?x∈R,2x>x2
C.“若x>3,则x>2”的否命题D.“x2≠1”是“x≠1”的充分不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知M(x0,y0)是抛物线C:y2=8x上一点,F为抛物线C的焦点,若|MF|>4,则x0的取值范围是(  )
A.(-∞,2)B.(2,+∞)C.(-∞,4)D.(4,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

13.把复数z的共轭复数记作$\overline{z}$,复数z=3-i(i为虚数单位),则复数$\frac{\overline{z}}{1+i}$在复平面内所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:解答题

12.在直角坐标系xOy中,已知点P(1,-2),直线l的参数方程是$\left\{\begin{array}{l}x=1+t\\ y=-2+\sqrt{3}t\end{array}\right.$(t为参数),以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程是$ρ=2\sqrt{2}cos(θ+\frac{π}{4})$.
(Ⅰ)将圆C的极坐标方程化为直角坐标方程,并写出圆心的极坐标
(Ⅱ)若直线l与圆C交于M、N两点,求|MP|+|NP|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知抛物线C:x2=2py(p>0)的焦点是F,准线是l,经过C上两点A、B分别作C的切线l1、l2
(Ⅰ)若l1交y轴于点D,求证:△AFD为等腰三角形;
(Ⅱ)设l1与l2交于点E在l上,若△ABE面积S的最小值是4,求C的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,将边长为2的正方形ABCD沿对角线BD对折,使得平面BCD⊥平面ABD,点E是BD中点,点F满足:FA∥CE,且$FA=2\sqrt{2}$.
(Ⅰ)求证:AB∥平面CDF;
(Ⅱ)求二面角A-FC-D的余弦值.

查看答案和解析>>

同步练习册答案