相关习题
 0  245279  245287  245293  245297  245303  245305  245309  245315  245317  245323  245329  245333  245335  245339  245345  245347  245353  245357  245359  245363  245365  245369  245371  245373  245374  245375  245377  245378  245379  245381  245383  245387  245389  245393  245395  245399  245405  245407  245413  245417  245419  245423  245429  245435  245437  245443  245447  245449  245455  245459  245465  245473  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=cosxcos(x+$\frac{π}{3}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(c)=-$\frac{1}{4}$,a=2,且△ABC的面积为2$\sqrt{3}$,求边长c的值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图,在平面直角坐标系xoy中,将直线y=$\frac{x}{2}$与直线x=1及x轴所围成的图形绕x轴旋转一周得到一个圆锥,圆锥的体积V圆锥=${∫}_{0}^{1}$π($\frac{x}{2}$)2dx=$\frac{π}{12}{x}^{3}$|${\;}_{0}^{1}$=$\frac{π}{12}$据此类比:将曲线y=x2(x≥0)与直线y=2及y轴所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=2π.

查看答案和解析>>

科目: 来源: 题型:选择题

12.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:
①函数y=x3-x2+1图象上两点A与B的横坐标分别为1,2,则φ(A,B)>$\sqrt{3}$;
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
③设点A、B是抛物线y=x2+1上不同的两点,则φ(A,B)≤2;
④设曲线y=ex上不同两点A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<1恒成立,则实数t 的取值范围是(-∞,1).以上正确命题的序号为(  )
A.①②B.②③C.③④D.②③④

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}$=3$\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{8}{3}$B.$\frac{5}{2}$C.3D.2

查看答案和解析>>

科目: 来源: 题型:解答题

10.设向量$\overrightarrow{a}$=(sinx,cos2x),$\overrightarrow{b}$=(sin2x,cosx).
(1)设$f(x)=\overrightarrow a•\overrightarrow b+sinx$,当$x∈(0,\frac{π}{2})$时,求f(x)的取值范围;
(2)构建两个集合A={sinx,cos2x},B={sin2x,cosx},若集合A=B,求满足条件的x的值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的焦距为4.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=|2x-1|+|x-a|,a∈R.若f(x)=|x-1+a|,求x的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知三棱锥P-ABC的四个顶点都在球O的球面上,若PA=AB=2,AC=1,∠BAC=120°,且PA⊥面ABC,则球O的表面积为$\frac{40}{3}$π.

查看答案和解析>>

科目: 来源: 题型:解答题

6.设等差数列{an}的前n项和为Sn,若a1=-11,a4+a6=-6.
(1)求数列{an}的通项公式;
(2)求当Sn取最小值时,序号n的值,并求出Sn的最小值;
(3)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知点P(1,$\sqrt{2}$)是角α终边上一点,则cos(30°-α)=$\frac{1}{2}$+$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步练习册答案