相关习题
 0  245320  245328  245334  245338  245344  245346  245350  245356  245358  245364  245370  245374  245376  245380  245386  245388  245394  245398  245400  245404  245406  245410  245412  245414  245415  245416  245418  245419  245420  245422  245424  245428  245430  245434  245436  245440  245446  245448  245454  245458  245460  245464  245470  245476  245478  245484  245488  245490  245496  245500  245506  245514  266669 

科目: 来源: 题型:解答题

6.已知f(x)=log2(1+x4)-$\frac{1+mx}{1+{x}^{2}}$(x∈R)是偶数,求实常数m的值,并给出函数f(x)的单调区间(不要求证明)

查看答案和解析>>

科目: 来源: 题型:解答题

5.定义域R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
①f′(x)是偶函数;
②f(x)在x=0处的切线与直线为x+2=y垂直.
(1)求函数f(x)的解析式;
(2)设g(x)=lnx-$\frac{m}{x}$,若存在x∈[1,e]使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.研究表明,成年人的身高和体重具有线性相关性,小明随机调查了五名成年人甲、乙、丙、丁、戊的身高和体重,得到的结果如下表所示,根据表格中的数据回答下列问题:
编号
身高x(cm)166170172174178
体重y(kg)5560656570
(1)从这五名成年人中任选两名做问卷调查,求选出的两名成年人的身高均超过170cm的概率;
(2)求体重y对身高x的线性回归方程y=bx+a,并据此预测身高为180cm的成年人的体重大约是多少?

查看答案和解析>>

科目: 来源: 题型:填空题

3.在△ABC中,∠C=90°,且CA=CB=3,点M满足$\overrightarrow{BM}=2\overrightarrow{AM}$,则$\overrightarrow{CM}•\overrightarrow{CA}$=18.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x}-1,0<x<1}\\{k-\frac{k}{x},x≥1}\end{array}\right.$.
(1)是否存在实数a,b(1≤a<b),使得函数y=f(x)的定义域、值域都是[a,b],如果存在,并求出a,b的值(用k表示);如果不存在,说明理由.
(2)若存在实数a,b(0<a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb],求m的取值范围(用k表示).

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知在等腰Rt△ABC中,BC=$\sqrt{2}$,∠C=90°.
(1)$\overrightarrow{AB}$•$\overrightarrow{AC}$=2;
(2)若点M是△ABC外接圆上的动点,O为圆心,求$\overrightarrow{OM}$•$\overrightarrow{BC}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设集合M={x|-2<x<3},N={x|2x+1≤1},则M∩(∁RN)=(  )
A.(3,+∞)B.(-2,-1]C.(-1,3)D.[-1,3)

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知:$\frac{1}{a_{n+1}}$=$\sqrt{3+\frac{1}{a_{n}^{2}}}$,(n∈N*),且a1=1,an>0.
(1)求证:{$\frac{1}{a_{n}^{2}}$}为等差数列.
(2)求出通项公式.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知抛物线y2=2px(p>0),过其焦点F且垂直于对称轴的直线被抛物线截得的弦长为4.
(1)求抛物线的标准方程;
(2)如图,过点C(m,O)(m>O)的直线与抛物线交于A,B两点,过点P(-m,O)作垂直于对称轴的直线l,在直线l上是否存在点Q,使得△ABQ为等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.计算:$\frac{(\sqrt{2}+\sqrt{2}i)^{2}(4+5i)}{(5-4i)(1-i)}$.

查看答案和解析>>

同步练习册答案