相关习题
 0  245382  245390  245396  245400  245406  245408  245412  245418  245420  245426  245432  245436  245438  245442  245448  245450  245456  245460  245462  245466  245468  245472  245474  245476  245477  245478  245480  245481  245482  245484  245486  245490  245492  245496  245498  245502  245508  245510  245516  245520  245522  245526  245532  245538  245540  245546  245550  245552  245558  245562  245568  245576  266669 

科目: 来源: 题型:解答题

19.某大型连锁商厦对自己的员工购买本商厦的物品,实行每月一号两种奖励,第一种u:在规定的商品范围内自由挑选一件,第二种v:送积分,月末发奖金(二选一),调查资料表明,凡是在本月一号选u的员工,下月一号会有40%改选v,而选v的员工,下月一号则有50%改选u,若此商厦共有1800名员工,用un、vn分别表示在第n(n为正整数)个月一号选u,v优惠方式的人数.
(1)试以un表示un+1
(2)若u1=0,求数列{un}、{vn}的通项公式;
(3)在(2)的情况下,问第几个月是一号,选u与选v奖励方式人数相等.

查看答案和解析>>

科目: 来源: 题型:填空题

18.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点,过F做双曲线一条渐近线的垂线与两条渐近线交于P,Q,若$\overline{FP}$=4$\overline{FQ}$,则双曲线的离心率是$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知曲线f(x)=ex-ax,其中e为自然对数的底数.
(1)若曲线f(x)=y在x=0处的切线与直线x+y-3=0平行,求函数y=f(x)的极值;
(2)若不等式f(x)≥1在区间[0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知矩形ABCD中,AB=1,BC=$\sqrt{3}$,将此矩形按如图所示流程沿地面上一直线滚动,在滚动过程中,始终与地面垂直,设BC与地面所成角为θ,矩形周边上最高点离地面的距离为f(θ),求:
(1)θ的取值范围;
(2)f(θ)的解析式;
(3)f(θ)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在正项数列{an}中,a1=3,an2=an-1+2(n=2,3,…)
(1)求a2,a3的值,判断an与2的大小关系并证明;
(2)求证:|an-2|<$\frac{1}{4}$|an-1-2|(n=2,3,…);
(3)求证:|a1-2|+|a2-2|+…+|an-2|<$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知函数f(x)=2ax2+bx-3a+1,当x∈[-4,4]时,f(x)≥0恒成立,则5a+b最值为最大值为$\frac{17}{21}$;最小值为-$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.若an=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$.,bn=n,n∈N*,则b1(a2012-a1)+b2(a2012-a2)+b3(a2012-a3)+…+b2011(a2012-a2011)=1011533.

查看答案和解析>>

科目: 来源: 题型:解答题

12.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求数列{an}的公差d的取值范围;
(2)求数列{an}的前n项和为Sn取得最大值时n的值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.不等式$\left\{\begin{array}{l}{5x+3y≤15}\\{y≤x+1}\\{x-5y≤3}\end{array}\right.$,表示的平面区域的面积为7.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数y=f(x)的图象关于点(a,b)对称的充要条件是f(a+x)+f(a-x)=2b(或f(x)+f(2a-x)=2b).如果函数y=f(x)的图象关于点(a,b)对称,则称点(a,b)为“中心点”,称函数y=f(x)为“准奇函数”.现有如下命题:
①若函数f(x)在R上的“中心点”为(a,f(a))则函数F(x)=f(x+a)-f(a)为R上的奇函数.
②若定义在R上的偶函数y=f(x)的“中心点”为(1,2),则方程f(x)=2在[-10,10]上至少有10个根.
③已知函数f(x)是定义在R上的增函数,点(1,0)为函数y=f(x-1)的“中心点”,若不等式f(m2-6m+21)+f(n2-8n)<0对任意的m,n∈R恒成立,则当m>3时,13<m2+n2<49.
其中正确的命题是①②③.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案