相关习题
 0  245420  245428  245434  245438  245444  245446  245450  245456  245458  245464  245470  245474  245476  245480  245486  245488  245494  245498  245500  245504  245506  245510  245512  245514  245515  245516  245518  245519  245520  245522  245524  245528  245530  245534  245536  245540  245546  245548  245554  245558  245560  245564  245570  245576  245578  245584  245588  245590  245596  245600  245606  245614  266669 

科目: 来源: 题型:解答题

9.已知数列{an}中,a1=1前n项和Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,求证:b1+b2+…+bn>$\frac{2}{7}$.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{0≤y≤k}\end{array}\right.$,z=x+y,若z的最大值为12,则k=6.

查看答案和解析>>

科目: 来源: 题型:选择题

7.定义运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若将函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinx}\\{1}&{cosx}\end{array}|$的图象向左平移m(m>0)个单位长度后,所得图象关于y轴对称,则m的最小值是(  )
A.$\frac{5π}{6}$B.$\frac{π}{8}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知△ABC内角A,B,C所对的边分别为a,b,c,若c2=a2+b2+2abcosC,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.某普通高中共有36个班,每班40名学生,每名学生都有且只有一部手机,为了解该校学生对A,B两种品牌手机的持有率及满意度情况,校学生会随机抽取了该校6个班的学生进行统计,得到每班持有两种品牌手机人数的茎叶图以及这些学生对自己所持手机的满意度统计表如下:

满意度
品牌
满意不满意
A80%20%
B60%40%
(Ⅰ)随机选取1名该校学生,估计该生持有A品牌手机的概率;
(Ⅱ)随机选取1名该校学生,估计该生持有A或B品牌手机且感到满意的概率;
(Ⅲ)A,B两种品牌的手机哪种市场前景更好?(直接写出结果,不必证明)

查看答案和解析>>

科目: 来源: 题型:解答题

4.设Sn是等差数列{an}的前n项和,已知a1+a2=5,S4=14,.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

3.一个几何体的三视图如图所示,那么这个几何体的体积为(  )
A.96B.120C.144D.180

查看答案和解析>>

科目: 来源: 题型:选择题

2.在边长为2的正方形ABCD中,E,F分别为BC和DC的中点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=(  )
A.$\frac{5}{2}$B.$\frac{3}{2}$C.4D.2

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图1,在边长为12的正方形AA′A1′A1中,BB1∥CC1∥AA1,且AB=3,且BC=4,AA1′分别交BB1,CC1于点P,Q,将该正方形沿BB1,CC1折叠,使得A′A1′与AA1重合,构成图2所示的三棱柱ABC-A1B1C1,在图2中.
(Ⅰ)求证:AB⊥PQ;
(Ⅱ)求直线BC与平面APQ所成角的正弦值;
(Ⅲ)在底边AC上有一点M,使得BM∥平面APQ,求$\frac{AM}{MC}$的值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.ABCD是矩形,AB=4,AD=3,沿AC将△ADC折起到△AD′C,使平面AD′C⊥平面△ABC,F是AD′的中点,E是AC上的一点,给出下列结论:
①存在点E,使得EF∥平面BCD′;
②存在点E,使得EF⊥平面ABD′;
③存在点E,使得D′E⊥平面ABC;
④存在点E,使得AC⊥平面BD′E.
其中正确结论的序号是①③.(写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案