相关习题
 0  245459  245467  245473  245477  245483  245485  245489  245495  245497  245503  245509  245513  245515  245519  245525  245527  245533  245537  245539  245543  245545  245549  245551  245553  245554  245555  245557  245558  245559  245561  245563  245567  245569  245573  245575  245579  245585  245587  245593  245597  245599  245603  245609  245615  245617  245623  245627  245629  245635  245639  245645  245653  266669 

科目: 来源: 题型:选择题

17.复数z=|$\sqrt{3}$-i|+i(i为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目: 来源: 题型:填空题

16.函数f(x)=x2-4xsin$\frac{πx}{2}$+1(x∈R)的零点的个数为4.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知函数f(x)=[x[x]],其中[x]表示不超过实数x的最大整数,如[-1.01]=-2,[1.99]=1,若$-\frac{3}{2}≤x<\frac{3}{2}$,则f(x)的值域为(  )
A.{0,1,2}B.{0,1,2,3}C.{-2,-1,0}D.{-1,0,1,2}

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知抛物线y=$\frac{1}{4}{x}^{2}$和y=-$\frac{1}{16}$x2+5所围成的封闭曲线如图所示,给定点 A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A 对称,则实数a的取值范围是(  )
A.(1,3)B.(2,4)C.($\frac{3}{2}$,3)D.($\frac{5}{2}$,4)

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知斜三棱柱ABC-A1B1C1,所有棱长均为2,若点A1在底面ABC的射影O落在AB的中点M上.
(1)在线段A1C1上找到一点N,使得MN∥面B1C1CB,求A1N的长度;
(2)求四棱锥体积VA-BB1C1C

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知等比数列{an}的前n项和为Sn,若S3=3a1,且a4=8,则S10=341或80.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知锐角三角形ABC的内角A、B、C所对的边分别为a、b、c,且b2cos2A=b2-8c2
(1)求$\frac{1}{tanA}$+$\frac{1}{tanB}$的值;
(2)若cosC=$\frac{15}{17}$,求tanA和tanB的值.

查看答案和解析>>

科目: 来源: 题型:选择题

10.平面向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{8}}$都为单位向量,且满足$\overrightarrow{{a}_{i}}$•$\overrightarrow{{a}_{i+1}}$=0(i=1,2,3,…,7),|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{8}}$|的所有可能的不同值共有(  )个.
A.5B.6C.7D.8

查看答案和解析>>

科目: 来源: 题型:解答题

9.为加公民的节水意识,某城市制定了以下用水收费标准,每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水治理费,设每户每月用水量为x(立方米),应交水费为y(元),求解下列问题:
(1)求y与x的函数关系式;
(2)若某用户用水12立方米,则需交水费多少元;
(3)若一用户上月所交水费为24元,则该用户上月用水多少立方米?(精确到一位小数).

查看答案和解析>>

科目: 来源: 题型:解答题

8.在平面直角坐标系中,以原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C1的方程$\left\{\begin{array}{l}{x=\sqrt{2}+cosa}\\{y=\sqrt{2}+sina}\end{array}\right.$(a为参数),曲线C2的方程:ρ=$\frac{8}{sin(θ+\frac{π}{4})}$.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)从C2上任意一点P作曲线C1的切线,设切点为Q,求切线长PQ的最小值及此时点P的极坐标.

查看答案和解析>>

同步练习册答案