相关习题
 0  245460  245468  245474  245478  245484  245486  245490  245496  245498  245504  245510  245514  245516  245520  245526  245528  245534  245538  245540  245544  245546  245550  245552  245554  245555  245556  245558  245559  245560  245562  245564  245568  245570  245574  245576  245580  245586  245588  245594  245598  245600  245604  245610  245616  245618  245624  245628  245630  245636  245640  245646  245654  266669 

科目: 来源: 题型:解答题

7.设命题p:实数x满足x2-4ax+3a2<0,其中a≠0,命题q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+2x-8>0}\end{array}\right.$.
(1)若a=1,且p且q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知二次函数f(x)=ax2+bx+c,且对任意x∈[0,2],均有|f(x)|≤1.
(1)求证:|3a+b|≤2;
(2)当3a+b=2时,
(i)求f(x)的解析式;
(ii)设h(x)=|$\frac{2x-1}{ax+2-a}$|,若存在实数m、n(m<n),使得h(x)在区间[m,n]上的值域为[λm,λn],求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.函数y=sin(2ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象与x轴交点的横坐标为A,B,已知|A-B|的最小值是$\frac{π}{3}$,图象过点($\frac{π}{4}$,1).
(1)求ω和φ;
(2)该函数图象是由y=sinx的图象怎样变换得到的?
(3)若函数f(x)满足f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=xlnx-$\frac{a}{2}{x^2}$,a≠0.
(Ⅰ)当a≥1时,判断函数f(x)的单调性;
(Ⅱ)若函数f(x)在$x∈(0,\frac{2}{a^2})$有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知e为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率,点(1,e)和$(e\;,\frac{{\sqrt{3}}}{2})$都在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l与椭圆相交于两点A(x1,y1)、B(x2,y2),设P(bx1,ay1)、Q(bx2,ay2),若以PQ为直径的圆C恒过坐标原点O,求证:△AOB的面积等于定值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在空间几何体ABCDE中,平面ACD⊥平面ABC,△ABC和△ACD都是边长为2的等边三角形,BE=2,点E在平面ABC内的射影落在∠ABC的平分线上,DE∥平面ABC.
(Ⅰ)求直线BE与平面ABC所成的角;
(Ⅱ)求二面角E-BC-A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行观测研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
日  期4月1日4月7日4月15日4月21日4月30日
温差x/°C101113128
发芽数y/颗2325302616
(Ⅰ)请根据4月7日、4月15日、4月21日三天的数据,求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,若选取的是4月1日与4月30日的两组数据作为检验数据,试问(I)中所得的线性回归方程是否可靠?
(Ⅲ)以这5天的观测数据来估计总体,在4月份任取3天,求恰有2天每100颗种子浸泡后的发芽数在[25,30]内的概率.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$;
参考数据:11×25+13×30+12×26=977,112+132+122=434.

查看答案和解析>>

科目: 来源: 题型:填空题

20.设a、b、c分别表示△ABC内角A、B、C的对边,若ac=b2-a2,$∠A=\frac{π}{6}$,则∠B=$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.把复数z的共轭复数记作$\overline{z}$,复数z=3-4i(i为虚数单位),则复数$\frac{6-2i}{|z|-\overline{z}}$在复平面内所对应的点在第一象限.

查看答案和解析>>

科目: 来源: 题型:填空题

18.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,从这10个数中随机抽取一个数,事件A=“抽取出的数小于8”,事件B=“抽取出的数是正数”,则P(B|A)=$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案