相关习题
 0  245476  245484  245490  245494  245500  245502  245506  245512  245514  245520  245526  245530  245532  245536  245542  245544  245550  245554  245556  245560  245562  245566  245568  245570  245571  245572  245574  245575  245576  245578  245580  245584  245586  245590  245592  245596  245602  245604  245610  245614  245616  245620  245626  245632  245634  245640  245644  245646  245652  245656  245662  245670  266669 

科目: 来源: 题型:解答题

7.已知CD是△ABC的边AB上的高,点E、F分别是AD、AC的中点,G为BD的中点,且CD=DB=2,AE=$\sqrt{2}$,现沿EF和CD把△AEF和
△BCD折起,使A、B两点重合于点P.
(1)求证:EG∥平面PFC;
(2)求四棱锥P-CDEF的体积VP-CDEF

查看答案和解析>>

科目: 来源: 题型:解答题

6.在△ABC中,a,b,c是其三个内角A,B,C的对边,且a≥b,sin2A+$\sqrt{3}$cos2A=2sin2B.
(1)求角C的大小;
(2)若c=$\sqrt{3}$,sinA=$\frac{1}{3}$,求△ABC的面积S.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知圆C的方程为x2+y2-2x+2y-2=0,若以直线y=kx+2(k∈Z)上任意一点为圆心,以1为半径的圆与圆C至多有一个公共点,则k的值为0.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知f(x)是定义在R上的偶函数.其导函数为f′(x),若f(x)+xf′(x)<0,且f(x+1)=f(3-x),f(2015)=2,则不等式xf(x)<2的解集为(  )
A.(-∞,2015)B.(2015,+∞)C.(-∞,0)D.(1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

3.给定区域D:$\left\{\begin{array}{l}{2x-y+k≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,(k为非负实数),若对区域D内任意一点N(x,y)恒有5x+2y-2k2+1>0成立,则实数k的取值范围是(  )
A.($\frac{1}{2}$,1)B.[0,1)C.[0,$\frac{1}{2}$)D.[1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

2.设x0是正常数,x1,x2,x3,…xn(n∈N*)是一组正数,定义$\overline{x}$=$\frac{ln\frac{{x}_{1}}{{x}_{0}}+ln\frac{{x}_{2}}{{x}_{0}}+…+ln\frac{{x}_{n}}{{x}_{0}}}{n}$为x1,x2,…xn相对于常数x0的“自然均值”,则自然数2,22,…22015相对于e(e是自然对数的底数)的“自然均值”为(  )
A.$\frac{2015}{2}$ln2-1B.1008ln2-1C.$\frac{2017}{2}$ln2-1D.1009ln2-1

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知实数a=log${\;}_{\frac{1}{3}}$2,b=log2e,c=($\frac{1}{3}$)0.4,则a,b,c的大小顺序为(  )
A.c<a<bB.a<c<bC.a<b<cD.b<c<a

查看答案和解析>>

科目: 来源: 题型:选择题

20.设a,b∈R,i是虚数单位,若a+1+bi=2-2i,则复数$\frac{a+bi}{a-bi}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:解答题

19.在△ABC内,b2=a2+bc,A=$\frac{π}{6}$,求角C.

查看答案和解析>>

科目: 来源: 题型:解答题

18.某中学研究性学习小组,为了研究高中理科学生的物理成绩是否与数学成绩有关系,在本校高三年级随机调查了50名理科学生,调查结果表明:在数学成绩优秀的25人中16人物理成绩优秀,另外9人物理成绩一般;在数学成绩一般的25人中有6人物理成绩优秀,另外19人物理成绩一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为高中理科学生的物理成绩与数学成绩有关系;
数学成绩优秀数学成绩一般总计
物理成绩优秀
物理成绩一般
总计
(Ⅱ)以调查结果的频率作为概率,从该校数学成绩优秀的学生中任取100人,求100人中物理成绩优秀的人数的数学期望和标准差.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案