相关习题
 0  245508  245516  245522  245526  245532  245534  245538  245544  245546  245552  245558  245562  245564  245568  245574  245576  245582  245586  245588  245592  245594  245598  245600  245602  245603  245604  245606  245607  245608  245610  245612  245616  245618  245622  245624  245628  245634  245636  245642  245646  245648  245652  245658  245664  245666  245672  245676  245678  245684  245688  245694  245702  266669 

科目: 来源: 题型:解答题

10.求函数y=$\frac{8}{{x}^{2}}$在区间[1,2]上的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

9.数列{an}中,a1=a>0,a≠1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2}{1+{a}_{n}}$,数列{bn}满足anbn=1-an
(1)求证:{bn}为等比数列,并求an
(2)试确定an+1和an的大小关系.

查看答案和解析>>

科目: 来源: 题型:填空题

8.函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f(x)满足:
①f(x)在[a,b]内是单调增函数;
②f(x)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f(x)的“倍值区间“.
若函数g(x)=4-me-x存在“倍值区间“,则实数m的取值范围是(0,2e).

查看答案和解析>>

科目: 来源: 题型:解答题

7.数列{an}的前n项和记为Sn,对任意的正整数n,均有4Sn=(an+1)2,且an>0.
(1)求a1及{an}的通项公式;
(2)令b${\;}_{n}=(-1)^{n-1}\frac{4n}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

6.某中学一名数学老师对全班50名学生某次考试成绩分男女进行了统计(满分150分),得到右面频率分布表:其中120分(含120分)以上为优秀.
(1)根据以上频率表的数据,完成下面的2×2列联表:
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间的关系?
(3)若从成绩及在[130,140]的学生中任取3人,已知取到的第一个人是男生,求取到的另外2人中至少有1名女生的概率.
分组频率
男生女生
[80,90]00.02
[90,100]0.040.08
[100,110]0.060.12
[110,120]0.100.18
[120,130]0.180.10
[130,140]0.080.04

查看答案和解析>>

科目: 来源: 题型:填空题

5.${∫}_{-2}^{2}|x-1|dx$=5.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知数列{an}的前n项和为 Sn,对于任意的正整数n,直线x+y=2n总是把圆 ${(x-n)^2}+{(y-\sqrt{S_n})^2}=2{n^2}$平均分为两部分,各项均为正数的等比数列 {bn}中,b6=b3b4,且 b3和 b5的等差中项是 2a3
(1)求数列{an},{bn}的通项公式;
(2)若cn=anbn,求数列 {cn}的前n项和 Tn

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知△ABC的内角A、B、C对应的边分别为a,b,c,且关于x的方程2a2+2x2+b2=2bx+2$\sqrt{2}$ax只有一个零点,${(\sqrt{2}b+a)cosC+ccosA=0$,S△ABC=$\frac{{\sqrt{2}}}{2}$sinA•sinB,则边c=1.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数 f(x)=$\frac{a}{x}+xlnx,g(x)={x^3}-{x^2}$-5,若对任意的 ${x_1},{x_2}∈[{\frac{1}{2},2}]$,都有f(x1)-g(x2)≥2成立,则a的取值范围是(  )
A.(0,+∞)B.[1,+∞)C.(-∞,0)D.(-∞,-1]

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知x,y满足区域 D:$\left\{\begin{array}{l}x+y-3≤0\\ 2x+y-2≥0\\ x-y-1≤0\end{array}$,给出下面4个命题:
p1:?x,y∈D,2x-y≥2
p2:?x,y∈D,2x-y≤2
p3:?x,y∈D,$\frac{y+1}{x+2}<\frac{1}{3}$
p4:?x,y∈D,$\frac{y+1}{x+2}≥\frac{1}{3}$,
其中真命题是(  )
A.p1,p3B.p2,p3C.p1,p4D.p2,p4

查看答案和解析>>

同步练习册答案