相关习题
 0  245594  245602  245608  245612  245618  245620  245624  245630  245632  245638  245644  245648  245650  245654  245660  245662  245668  245672  245674  245678  245680  245684  245686  245688  245689  245690  245692  245693  245694  245696  245698  245702  245704  245708  245710  245714  245720  245722  245728  245732  245734  245738  245744  245750  245752  245758  245762  245764  245770  245774  245780  245788  266669 

科目: 来源: 题型:解答题

11.设a,b,c为互不相等的正整数,求证:1+$\frac{1}{2}$+$\frac{1}{3}$≤a+$\frac{b}{{2}^{2}}$+$\frac{c}{{3}^{2}}$.(用柯西不等式证明)

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知x、y∈R+,且x+y=4,求$\frac{1}{x}$+$\frac{3}{y}$的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.某校在寒假放假之前举行主题为“珍惜生命,安全出行”的“交通与安全”知识宣传与竞赛活动,为了了解本次活动举办的效果,从全校学生的答卷中抽取了部分学生的答卷成绩(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),…,[90,100]的数据):

(Ⅰ)求n,x,y的值,并根据频率分布的直观图估计这次竞赛的平均成绩;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加市团委举办的宣传演讲活动,求所抽取的2名同学来自不同组的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知不等式 $1+\frac{1}{4}<\frac{3}{2},1+\frac{1}{4}+\frac{1}{9}<\frac{5}{3},1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}<\frac{7}{4},…$,照此规律,总结出第 n(n∈N*)个不等式为1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{(n+1)^{2}}$<$\frac{2n+1}{n+1}$.

查看答案和解析>>

科目: 来源: 题型:选择题

7.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则(  )
A.$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=1B.$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2C.$\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=1D.$\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=2

查看答案和解析>>

科目: 来源: 题型:解答题

6.求函数y=2sinx-3cosx的周期和最值.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左右焦点分别为F1,F2,点P($\sqrt{3}$,y0)在该双曲线上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则双曲线的渐近线方程为(  )
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\sqrt{3}x$D.y=±2x

查看答案和解析>>

科目: 来源: 题型:解答题

4.过原点作两条不同的直线l1和l2分别与圆x2+y2-2x=0相交于两点A,B,
(1)若直线l1和l2的斜率分别为k和$\frac{1}{k}$(k>0),求证:|OA|2+|OB|2为定值;
(2)若|OA|•|OB|=λ(λ为正常数),试问:不论A,B两点的位置如何变化,直线AB总能与一个定圆相切吗?若能,求出次定圆方程,若不能,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,已知斜三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=a,点A1在底面ABC上的射影恰为AC的中点D,A1D∩AC1=M,BA1⊥AC1
(Ⅰ)试问在线段AB是否存在一点N,使得MN∥平面BB1C1C,若存在,指出N点位置,并证明你的结论;若不存在,说明理由;
(Ⅱ)求证:四边形A1C1CA是菱形,并求AC1长.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左焦点为F,右顶点为A,点P在椭圆上,直线AP交y轴于点M,若$\overrightarrow{PF}$=$\sqrt{3}\overrightarrow{MO}$(O为坐标原点),则椭圆的离心率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}-1$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案