相关习题
 0  245602  245610  245616  245620  245626  245628  245632  245638  245640  245646  245652  245656  245658  245662  245668  245670  245676  245680  245682  245686  245688  245692  245694  245696  245697  245698  245700  245701  245702  245704  245706  245710  245712  245716  245718  245722  245728  245730  245736  245740  245742  245746  245752  245758  245760  245766  245770  245772  245778  245782  245788  245796  266669 

科目: 来源: 题型:解答题

11.已知抛物线C的顶点在原点,焦点在x轴的正半轴,直线y=-4x+1被抛物线C所截得的弦AB的中点M横坐标为$\frac{3}{8}$.
(1)求抛物线C的方程;
(2)证明:存在顶点M0,使过M0的动直线与抛物线C交于P,Q两点,且以PQ为直径的圆过原点.
(3)过满足(2)条件的点M0的直线l与抛物线C分别交于A,B两点.若$\overrightarrow{A{M}_{0}}$=$\frac{1}{2}$$\overrightarrow{{M}_{0}B}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

10.将区间[0,1]进行10等分,估计由$\left\{\begin{array}{l}{y=3x}\\{x=1}\\{y=0}\end{array}\right.$围成的图形的面积,并求出估计值的误差.

查看答案和解析>>

科目: 来源: 题型:填空题

9.函数f(x)=$\left\{\begin{array}{l}{|lgx|,}&{0<x≤\frac{1}{10}}\\{-2(x-1)(x-3)-4,}&{x>\frac{1}{10}}\end{array}\right.$的值域是R.

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数f(x)=lnx,g(x)=x2-3x,记F(x)=f(x)+g(x)
(1)求曲线y=f(x)在x=e处的切线方程;
(2)求函数F(x)在[$\frac{1}{2}$,2]上的最值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{16}+\frac{y^2}{b^2}$=1(0<b<4),点C(8,0),直线AC和椭圆相交于不重合的两点A、B(直线AC不与x轴重合),从A点出发的光线经x轴反射后过点B,设A(m,n),如图所示.
(Ⅰ)写出直线AC的方程.
(Ⅱ)求证点B的坐标是($\frac{5m-16}{m-5}$,-$\frac{3n}{m-5}$).
(Ⅲ)求x轴上光线反射点D的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知,四边形ABCD是棱形,AC∩BD=O,P是平面ABCD外一点,AC=APP=2$\sqrt{3}$,BD=2,PC=4$\sqrt{2}$,PC⊥BD,E是线段PC的中点,如图所示.
(Ⅰ)求直线AP和直线DE的夹角.
(Ⅱ)求点C到平面DEO的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆E的长轴的一个端点是抛物线y2=4$\sqrt{5}$x的焦点,离心率是$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆E的标准方程;
(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得$\overrightarrow{MA}•\overrightarrow{MB}$与k的取值无关,试求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图所示,三棱锥P-ABC中,点D为线段AB上一点,AC⊥BC,PD⊥平面ABC,AD=$\frac{1}{2}$DB,PD=BD,∠ABC=30°.
(1)求证:PA⊥CD;
(2)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图:正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:A1C∥平面AB1D;
(2)求点C到平面AB1D的距离.
(3)求二面角B-AB1-D的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

2.为迎接2014年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足:p=3-$\frac{2}{x+1}$(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本10+2p万元(不含促销费用),产品的销售价格定为(4+$\frac{20}{p}$)元/件,假定厂家的生产能力完全能满足市场的销售需求.
(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;
(Ⅱ)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.

查看答案和解析>>

同步练习册答案