相关习题
 0  245651  245659  245665  245669  245675  245677  245681  245687  245689  245695  245701  245705  245707  245711  245717  245719  245725  245729  245731  245735  245737  245741  245743  245745  245746  245747  245749  245750  245751  245753  245755  245759  245761  245765  245767  245771  245777  245779  245785  245789  245791  245795  245801  245807  245809  245815  245819  245821  245827  245831  245837  245845  266669 

科目: 来源: 题型:填空题

18.有一口大钟每到整点就自动以响铃的方式报时,1点响1声,2点响2声,3点响3声,…,12点响12声(12时制),且每次报时时相邻两次响铃之间的间隔均为1秒.在一次大钟报时时,某人从第一声铃响开始计时,如果此次是12点的报时,则此人至少需等待11秒才能确定时间;如果此次是11点的报时,则此人至少需等待11秒才能确定时间.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知椭圆C的中心为坐标原点,长轴长为4,一条准线方程为x=-4

(1)求椭圆C的标准方程;
(2)求椭圆C被直线y=x+1截得的弦长;
(3)已知点A为椭圆的左顶点,过点A作斜率为k1,k2的两条直线与椭圆分别交于点P,Q,若k1•k2=-1,证明:直线PQ过定点,并求出定点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

16.(1)已知椭圆的中心为坐标原点,且与双曲线y2-3x2=3有相同的焦点,椭圆的离心率e=$\frac{1}{2}$,求椭圆的标准方程;
(2)已知椭圆$\frac{x^2}{m}$+$\frac{y^2}{3}$=1的离心率为$\frac{{\sqrt{3}}}{2}$,求m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:BC⊥平面VAC;
(2)若直线AM与平面VAC所成角为$\frac{π}{4}$,求三棱锥B-ACM的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点
(1)证明:PB∥平面AEC;
(2)已知AP=1,AD=$\sqrt{3}$,设EC与平面ABCD所成的角为α,且tanα=$\frac{{\sqrt{3}}}{6}$,求二面角D-AE-C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)求二面角M-AB-C的大小;
(Ⅲ)如果N是棱AB上一点,且直线CN与平面MAB所成角的正弦值为$\frac{{\sqrt{10}}}{5}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知抛物线C的顶点是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心,其焦点与该椭圆的右焦点重合.
(1)求抛物线C的方程;
(2)过抛物线C的焦点F的直线与抛物线交于M、N两点,自M、N点向准线l作垂线,垂足分别为M1、N1,记△FBM1,△FM1N1,△FNN1的面积分别为S1、S2、S3是否存在实数λ,使得对任意过焦点的直线,都有S22=λS1S3成立,若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知点B(0,1),点C(0,-3),直线PB、PC都是圆(x-1)2+y2=1的切线(P点不在y轴上).
(Ⅰ)求过点P且焦点在x轴上抛物线的标准方程;
(Ⅱ)过点(1,0)作直线l与(Ⅰ)中的抛物线相交于M、N两点,问是否存在定点R,使$\overrightarrow{RM}$•$\overrightarrow{RN}$为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图所示,一个直径AB=2的半圆,过点A作这个圆所在平面的垂线,在垂线上取一点S,使AS=AB,C为半圆上的一个动点,M、N分别在SB、SC上,且AN⊥SC,AM⊥SB.
(1)证明:AN⊥BC;
(2)证明:SB⊥面ANM;
(3)求三棱锥S-AMN体积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=lnx+$\frac{m}{x}$,m∈R,
(1)若曲线y=f(x)在点(1,f(1))处的切线与y轴交点的纵坐标为1,求m;
(2)讨论f(x)的单调性;
(3)若对任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案