相关习题
 0  245652  245660  245666  245670  245676  245678  245682  245688  245690  245696  245702  245706  245708  245712  245718  245720  245726  245730  245732  245736  245738  245742  245744  245746  245747  245748  245750  245751  245752  245754  245756  245760  245762  245766  245768  245772  245778  245780  245786  245790  245792  245796  245802  245808  245810  245816  245820  245822  245828  245832  245838  245846  266669 

科目: 来源: 题型:选择题

8.F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a,b>0)的焦点,过F作x轴的垂线,与双曲线交于点A,过F作与渐近线平行的直线,与双曲线交于点B.若三角形FAB为直角三角形,则双曲线C的离心率为(  )
A.不是定值B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知等差数列{an}中,公差d>0,等比数列{bn}中,b1>0,公比q>0且q≠1,若an-a1>logabn-logab1(n>1,n∈N,a>0,a≠1),求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知抛物线y2=2px(p>0),过点C(-2,0)的直线l交抛物线于A,B两点,坐标原点为O,$\overrightarrow{OA}$•$\overrightarrow{OB}$=12.
(I)求抛物线的方程;
(Ⅱ)当以AB为直径的圆与y轴相切时,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

5.客车和货车两车同时从A站出发向两个不同方向行驶,5小时后再C站相遇(如图所示,四边形是长方形)已知B、C两站相距20千米,货车速度比客车速度慢$\frac{1}{4}$,客车每小时行驶多少千米?货车呢?

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{3}{x^3}-\frac{(t+1)}{2}{x^2}$+tx-1.
(Ⅰ)若f(x)在(0,2)上无极值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最大值,求t的取值范围;
(Ⅲ)当t>0时,若f(x)≤xex-1(e为自然对数的底数)对任意x∈[0,+∞)恒成立,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

3.过边长为2的正方形的中心作直线l将正方形分成两部分,将其中的一个部分沿直线l翻折到另一个部分上.则两个部分图形中不重叠的面积的最大值是12-8$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知中心在原点O,焦点在x轴上,离心率为$\frac{{\sqrt{3}}}{2}$的椭圆;以椭圆的顶点为顶点构成的四边形的面积为4.
(1)求椭圆的标准方程;
(2)若A,B分别是椭圆长轴的左.右端点,动点M(异于A、B)满足$\overrightarrow{MA}•\overrightarrow{MB}$=0,直线MA交椭圆于P,求$\overrightarrow{OM}$•$\overrightarrow{OP}$的最小值并求对应的直线AM的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,四边形ABCD为菱形,MA⊥平面ABCD,四边形ADNM是平行四边形.
(Ⅰ)求证:MB∥平面CDN;
(Ⅱ)求证:平面AMC⊥平面BDN.

查看答案和解析>>

科目: 来源: 题型:选择题

20.对于定义在N*上的函数f(x),若?x0,N∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.已知函数f(x)=2x+1,x∈N*,则该函数的“生成点”共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目: 来源: 题型:解答题

19.设函数f(x)=$\frac{{{e^{ax}}}}{{{x^2}+1}}$,a∈R.
(Ⅰ)当a=$\frac{3}{5}$时,求函数f(x)的单调区间;
(Ⅱ)设g(x)为f(x)的导函数,当x∈[$\frac{1}{e}$,2e]时,函数f(x)的图象总在g(x)的图象的上方,求a的取值范围.

查看答案和解析>>

同步练习册答案