相关习题
 0  245653  245661  245667  245671  245677  245679  245683  245689  245691  245697  245703  245707  245709  245713  245719  245721  245727  245731  245733  245737  245739  245743  245745  245747  245748  245749  245751  245752  245753  245755  245757  245761  245763  245767  245769  245773  245779  245781  245787  245791  245793  245797  245803  245809  245811  245817  245821  245823  245829  245833  245839  245847  266669 

科目: 来源: 题型:选择题

18.若双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的$\frac{1}{4}$,则该双曲线的渐近线方程是(  )
A.x±2y=0B.2x±y=0C.$\sqrt{3}$x±y=0D.x$±\sqrt{3}$y=0

查看答案和解析>>

科目: 来源: 题型:填空题

17.函数f(x)=-x3-3x+5的零点所在的区间为[n,n+1],n∈Z,则n的值为1.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2)、A(x1,y1)、B(x2,y2)均在抛物线上.
(1)写出该抛物线的标准方程;
(2)当直线PA与PB的斜率存在且倾斜角互补时,求直线AB的斜率.

查看答案和解析>>

科目: 来源: 题型:解答题

15.过抛物线y2=2px(p为不等于2的素数)的焦点F,作与x轴不垂直的直线l交抛物线于M、N两点,线段MN的垂直平分线交MN于点P,交x轴于点Q.
(1)求PQ的中点R的轨迹L的方程;
(2)证明:轨迹L上有无穷多个整点,但L上任意整点到原点的距离均不是整数.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,a1=1,且对任意n∈N*,S1,$\frac{1}{2}\\;{a}_{\\;\\;n+1}$an+1,Sn成等差数列.
(Ⅰ)求an
(Ⅱ)若bn=$\frac{n}{4{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在四棱锥E-ABCD中,AB=BD=AD,CB=CD,EC⊥BD.
(Ⅰ)求证:△BDE是等腰三角形;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知全集U=R,集合A={x|x2+(a-1)x-a>0},B={x|(x+a)(x+b)>0(a≠b)},M={x|x2-2x-3≤0} 
(1)若∁UB=M,求a,b的值;
(2)若-1<b<a<1,求A∩B;
(3)若-3<a<-1,且a2-1∈∁UA,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在平面直角坐标系中,曲线C1的参数方程为 $\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),在以Ο为极点,x轴的正半轴为极轴的坐标系中,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M($\sqrt{3}$,$\frac{1}{2}$)对应的参数φ=$\frac{π}{6}$,射线θ=$\frac{π}{3}$与曲线C2交于点D(1,$\frac{π}{3}$).
(1)求曲线C1,C2的直角坐标方程;
(2)若点A(ρ1,θ),Β(ρ2,θ+$\frac{π}{2}$)都在曲线C1上,求$\frac{1}{{ρ}_{1}^{2}+{ρ}_{2}^{2}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=$\frac{x}{2}$,数列{an}满足关系为an=f(an-1),(n≥2且n∈N)且a1=16.
(1)证明:数列{an}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn=log2an,求数列{bn}的前n项和Sn,并求Sn取最大值时n的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.函数f(x)是R的奇函数,f(x+1)=f(1-x),当0≤x≤1时,f(x)=3x.
(1)求f(2010.5)的值;
(2)当1≤x≤5时,求f(x)的解析式;
(3)解不等式f(2x-1)>1.

查看答案和解析>>

同步练习册答案