相关习题
 0  245674  245682  245688  245692  245698  245700  245704  245710  245712  245718  245724  245728  245730  245734  245740  245742  245748  245752  245754  245758  245760  245764  245766  245768  245769  245770  245772  245773  245774  245776  245778  245782  245784  245788  245790  245794  245800  245802  245808  245812  245814  245818  245824  245830  245832  245838  245842  245844  245850  245854  245860  245868  266669 

科目: 来源: 题型:解答题

13.已知直线l1:2x-y-5=0;直线l2:x+y-5=0.
(Ⅰ)求点P(3,0)到直线l1的距离;
(Ⅱ)直线m过点P(3,0),与直线l1、直线l2分别交与点M、N,且点P是线段MN的中点,求直线m的一般式方程; 
(Ⅲ)已知⊙Q是所有过(Ⅱ)中的点M、N的圆中周长最小的圆,求⊙Q的标准方程.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD中是正方形,侧面PAB⊥底面ABCD中,PA=AB,点E是PB的中点,点F在边BC上移动.
(Ⅰ)若F为BC中点,求证:EF∥平面PAC;
(Ⅱ)求证:AE⊥PF;
(Ⅲ)若PB=$\sqrt{2}$AB,二面角E-AF-B的余弦值等于$\frac{\sqrt{11}}{11}$,试判断点F在边BC上的位置,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两个焦点为F1、F2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l与椭圆相交于A、B两点,且满足|AF1|+|AF2|=4$\sqrt{2},{K_{OA}}•{K_{OB}}=-\frac{1}{2}$,O为坐标原点.
(I)求椭圆的方程;
(Ⅱ)求$\overrightarrow{OA}•\overrightarrow{OB}$的最值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在正三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E分别是CC1,AB的中点.
(Ⅰ)求证:CE∥平面A1BD;
(Ⅱ)若E到A1B的距离为$\frac{2\sqrt{5}}{5}$,求正三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),长轴长是短轴长的$\sqrt{3}$倍,点P是椭圆C上一动点,其到点M(0,2)距离的最大值为3.
(1)求椭圆C的方程;
(2)已知点N(5,0),设不垂直于x轴的直线l与椭圆C交于不同的两点A,B,若x轴是∠ANB的角平分线,证明直线l过定点.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知动点M到点(4,0)的距离比它到直线l:x=-3的距离多1.
(1)求动点M的轨迹C的方程;
(2)求过点(4,0)且倾斜角为30°的直线被曲线C所截得线段的长度.

查看答案和解析>>

科目: 来源: 题型:填空题

7.椭圆E:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的左顶点为A,点B,C是椭圆E上的两个动点.若直线AB,AC的斜率乘积为定值-$\frac{1}{4}$,则动直线BC恒过定点的坐标为(1,0).

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,又椭圆上任一点到两焦点的距离和为2$\sqrt{2}$.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆的方程;
(2)在线段OF上是否存在点M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点为F,上顶点为B,若线段BF的垂直平分线经过坐标原点O.
(Ⅰ)求此椭圆的离心率;
(Ⅱ)过坐标原点引两条相互垂直的直线OM,ON(与坐标轴不重合)分别交椭圆于M,N两点,若三角形OMN的最小面积为$\sqrt{2}$,求椭圆方程.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线y2=4x的焦点F重合,且椭圆短轴的两个三等分点与焦点F构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若椭圆在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA、PB分别交椭圆于另外两点A、B,求证:直线AB的斜率为定值.

查看答案和解析>>

同步练习册答案