相关习题
 0  245675  245683  245689  245693  245699  245701  245705  245711  245713  245719  245725  245729  245731  245735  245741  245743  245749  245753  245755  245759  245761  245765  245767  245769  245770  245771  245773  245774  245775  245777  245779  245783  245785  245789  245791  245795  245801  245803  245809  245813  245815  245819  245825  245831  245833  245839  245843  245845  245851  245855  245861  245869  266669 

科目: 来源: 题型:解答题

3.已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最小值1,最大值4,设f(x)=$\frac{g(x)}{x}$.
(1)若不等式f(2x)-k+2≥0在x∈[-1,1]上恒成立,求实数k的范围;
(2)方程f(|2x-1|)+k($\frac{2}{|{2}^{x}-1|}$-3)=0有四个不同的实数解,求实数k的范围.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知数列{an}满足an=$\frac{1}{3}$n3-$\frac{5}{4}$n2+3+m,若数列的最小项为1,则m的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.-$\frac{1}{4}$D.-$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知四个命题:
①若直线l∥平面a,则直线l的垂线必平行于平面a;
②若直线l与平面a相交,则有且只有一个平面经过干线l与平面a垂直;
③若一个三棱锥每两个相邻侧面所成的角都相等,则这个三棱锥是正三棱锥;
④若四棱柱的任意两条对角线相交且互相平分,则这个四棱柱为平行六面体.
其中正确的命题是④.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在三棱锥P-ABC中,PA=a,AB=AC=$\sqrt{2}$a,∠PAB=∠PAC=45°,∠PBC=60°,设D是线段AB上异于A,B的任意一点,DE⊥PB于点E.
(1)求证:AP∥平面DEC;
(2)若D是线段AB的中点,求二面角E-DC-B的大小的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设△ABC的内角A,B,C所对边的长分别为a,b,c,S是△ABC的面积,且sinA=$\frac{2S}{{a}^{2}{-c}^{2}}$
(1)证明:∠A=2∠C;
(2)若2c2,a2,b2成等差数列,求角B的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx.
(Ⅰ)若f(x)>0恒成立,求m的取值范围;
(Ⅱ)对任意实数x,f(x)与g(x)至少有一个为正数,求m的取值范围;
(Ⅲ)是否存在正数m,使得当x>0时,不等式[f(x)-2][g(x)-1]≥0恒成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数)
(1)求函数f(x)的最小值;
(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值;
(3)在(2)的条件下,证明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)(n∈N*

查看答案和解析>>

科目: 来源: 题型:选择题

16.函数f(x)=x3+bx2+cx+d(b,c,d均为常数),若f(x)在x=x1时取得极大值且x1∈(0,1),在x=x2时取得极小值且x2∈(1,2),则(b+$\frac{1}{2}$)2+(c-3)2的取值范围是(  )
A.(5,25)B.($\sqrt{5}$,5)C.($\frac{37}{4}$,25)D.($\frac{\sqrt{37}}{2}$,5)

查看答案和解析>>

科目: 来源: 题型:选择题

15.若F是$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,MN是过中心的一条弦,则△FMN面积的最大值是(  )
A.abB.acC.bcD.$\frac{ab}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知点P(-2,3t-$\frac{1}{t}$),Q(0,2t),(t∈R,t≠0)
(1)当t=2时,求圆心在坐标原点且与直线PQ相切的圆的标准方程.
(2)是否存在圆心在x轴上的定圆M,对于任意的非零实数t,直线PQ恒与定圆M相切,如果存在,求出圆M的标准方程,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案