相关习题
 0  245692  245700  245706  245710  245716  245718  245722  245728  245730  245736  245742  245746  245748  245752  245758  245760  245766  245770  245772  245776  245778  245782  245784  245786  245787  245788  245790  245791  245792  245794  245796  245800  245802  245806  245808  245812  245818  245820  245826  245830  245832  245836  245842  245848  245850  245856  245860  245862  245868  245872  245878  245886  266669 

科目: 来源: 题型:解答题

19.求两条渐近线为x±2y=0且截直线x-y-3=0所得弦长为$\frac{8\sqrt{3}}{3}$的双曲线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知双曲线与椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{9}$=1共焦点,且一条渐近线方程是y=-$\frac{\sqrt{3}}{2}$x,求此双曲线方程.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足|$\overrightarrow{M{F}_{1}}$|=2|$\overrightarrow{MO}$|=2|$\overrightarrow{M{F}_{2}}$|,则椭圆的离心率e=(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.利用定积分的几何意义求${∫}_{-2}^{2}$f(x)dx+${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$sinxcosxdx,其中f(x)=$\left\{\begin{array}{l}{2x-1,x≥0}\\{3x-1,x<0}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(1)设a=2,解关于x的不等式:f(x)+g(x)≤7;
(2)若当g(x)≤5时,恒有f(x)≤6,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则
不等式(x+2015)3f(x+2015)+27f(-3)>0的解集(  )
A.(-2018,-2015)B.(-∞,-2016)C.(-2016,-2015)D.(-∞,-2012)

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=x2+(a-4)x+3-a.
(1)若f(x)在区间[0,1]上不单调,求a的取值范围;
(2)若对于任意的a∈(0,4),存在x0∈[0,2],使得|f(x0)|≥t,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在矩形纸片ABCD中,AB=6,BC=12.将矩形纸片在右下角折起,使得该角的顶点落在矩形的左边上,设EF=l,∠EFB=θ,那么的l长度取决于角θ的大小.
(1)写出用θ表示l的函数关系式,并给出定义域;
(2)求l的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=ex-mx2+1(m∈R).
(Ⅰ)当m=$\frac{1}{2}$时,是判断函数f(x)的单调性并给予证明;
(Ⅱ)若f(x)有两个极值点a,b(a<b);
(i)求实数m的取值范围
(ii)证明:2<f(a)<$\frac{e}{2}$+1(注:e是自然对数的底数)

查看答案和解析>>

科目: 来源: 题型:选择题

10.若直线l1:x+ay-1=0与l2:4x-2y+3=0垂直,则积分${∫}_{-2}^{a}$(x3+sinx-5)dx的值为(  )
A.6+2sin2B.-6-2cos2C.20D.-20

查看答案和解析>>

同步练习册答案