相关习题
 0  245705  245713  245719  245723  245729  245731  245735  245741  245743  245749  245755  245759  245761  245765  245771  245773  245779  245783  245785  245789  245791  245795  245797  245799  245800  245801  245803  245804  245805  245807  245809  245813  245815  245819  245821  245825  245831  245833  245839  245843  245845  245849  245855  245861  245863  245869  245873  245875  245881  245885  245891  245899  266669 

科目: 来源: 题型:解答题

20.如图,AB,CD为圆O的两条直径,P为圆O所在平面外的一点,且PA=PB=PC
(1)求证:平面PAB⊥圆O所在平面,
(2)若圆O的半径为2,PA=4,求以圆O为底面,P为顶点的几何体的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知四棱锥P-ABCD中,底面ABCD是菱形,M是PC的中点,∠PDC=90°,∠PDA=90°,∠DAB=60°
(Ⅰ)证明:PA∥平面BDM;
(Ⅱ)若PD=2,且二面角C-DM-B的平面角的正切值等于$\sqrt{6}$,求三棱锥M-BCD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知三棱锥的三条侧棱两两互相垂直,底面三条边长分别为$\sqrt{13}$,5,2$\sqrt{5}$,求三棱锥的侧面积.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在三棱锥P-ABC中,D为AB的中点.
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知双曲线与椭圆$\frac{{x}^{2}}{27}+\frac{{y}^{2}}{36}$=1有相同焦点,且经过点($\sqrt{15}$,4).
(1)求双曲线的方程;
(2)过点M(1,0)作斜率为1的直线双曲线于A,B两点,求AB.

查看答案和解析>>

科目: 来源: 题型:填空题

15.在(x+$\frac{1}{x}$-2)20的展开式中含x-17项的系数是-9880(用数字作答)

查看答案和解析>>

科目: 来源: 题型:选择题

14.设定义在(0,+∞)上的函数f(x)=$\left\{\begin{array}{l}2x,x≤0\\{x^2}-2x-\frac{3}{2},x>0\end{array}$,g(x)=f(x)+a,则当实数a满足2<a<$\frac{5}{2}$时,函数y=g(x)的零点个数为(  )
A.0B.2C.3

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在三棱锥P-ABC中,AB⊥PC,AC=2,BC=4,∠ABC=∠PCA=30°.
(1)求证:AB⊥平面PAC. 
(2)设二面角A-PC-B•的大小为θ•,求tanθ•的值.
(3)若三棱锥P-ABC的体积为4$\sqrt{3}$,求侧棱PC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,ABCD是正方形,DE⊥平面ABCD,AF∥DE,DE=DA=3AF.
(Ⅰ) 求证:AC⊥BE;
(Ⅱ) 求面FBE和面DBE所形成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,ABCD为等腰梯形,且AD∥BC,E为BC的中点,AB=AD=BE,沿DE将△CDE折起成四棱锥C-ABED.
(1)设点O为ED的中点,问在棱AC上是否存在一点M使得OM∥平面CBE,并证明你的结论;
(2)若AB=2,求四棱锥C-ABED体积的最大值.

查看答案和解析>>

同步练习册答案