相关习题
 0  245708  245716  245722  245726  245732  245734  245738  245744  245746  245752  245758  245762  245764  245768  245774  245776  245782  245786  245788  245792  245794  245798  245800  245802  245803  245804  245806  245807  245808  245810  245812  245816  245818  245822  245824  245828  245834  245836  245842  245846  245848  245852  245858  245864  245866  245872  245876  245878  245884  245888  245894  245902  266669 

科目: 来源: 题型:解答题

10.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,离心率为$\frac{\sqrt{3}}{3}$,过点F且与x轴垂直的直线被椭圆截得的线段长为$\frac{4\sqrt{3}}{3}$.
(1)求椭圆C的方程;
(2)直线l:y=kx+t(k≠0)与椭圆C交于M、N两点,线段MN的垂直平分线与y轴交点P(0,-$\frac{1}{4}$),求△MON(O为坐标原点)面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2的坐标为(c,0),若b=c,且点(c,1)在椭圆Γ上.
(1)求椭圆Γ的标准方程;
(2)当k≠0时,若直线l1:y=k(x+$\sqrt{2}$)与椭圆r的交点为A,B;直线l2:y=k($\sqrt{2}$x+1)与圆E:x2+y2=1的交点为M,N,记△AOB和△MON的面积分别为S1,S2,其中O为坐标原点,证明$\frac{{S}_{1}}{{S}_{2}}$为定值,并求出该定值.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是(  )
A.[$\frac{1}{2}$,1)B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{3}}{2}$,1)D.(1,$\frac{3}{2}$]

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知F1,F2为椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右焦点,点P(1,$\frac{3}{2}$)在椭圆上,且|PF1|+|PF2|=4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过F1的直线l1,l2分别交椭圆E于A,C和B,D,且l1⊥l2,问是否存在常数λ,使得$\frac{1}{|AC|}$,λ,$\frac{1}{|BD|}$成等差数列?若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

6.设f(x)=|lgx|,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点,则实数a的取值范围是(  )
A.$({0,\frac{1}{e}})$B.$({\frac{lg2}{2},\frac{lge}{e}})$C.$({\frac{lg2}{2},e})$D.$({0,\frac{lg2}{2}})$

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知抛物线y2=2px(p>0)与椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)有相同的焦点F,点A是两曲线的一个公共点,且AF⊥x轴,则椭圆的离心率为(  )
A.$\sqrt{3}$-1B.$\sqrt{2}$-1C.$\frac{\sqrt{5}-1}{2}$D.$\frac{2\sqrt{2}-1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知命题p:?x∈R,x+|x-a|>3恒成立,命题q:函数f(x)=lg[-x2+(a-2)x+2a]在区间(1,2)上单调递减.
(1)若p∨(¬q)是假命题,求实数a的取值集合A;
(2)设函数g(x)=4x-m•2x+25,在(1)的前提下,当x∈A时,关于x的方程g(x)=0只有一个实根,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

3.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S. 
①当0<CQ<$\frac{1}{2}$时,S为四边形
②截面在底面上投影面积恒为定值$\frac{3}{4}$
③存在某个位置,使得截面S与平面A1BD垂直
④当CQ=$\frac{3}{4}$时,S与C1D1的交点R满足C1R=$\frac{1}{3}$
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=alnx-ax-3(a∈R).
(1)求f(x)的单调区间
(2)设a=-1,求证:当x∈(1,+∞)时,f(x)+2>0
(3)求证:$\frac{ln2}{2}$•$\frac{ln3}{3}$•$\frac{ln4}{4}$…$\frac{lnn}{n}$<$\frac{1}{n}$(n∈N+且n≥2)

查看答案和解析>>

科目: 来源: 题型:解答题

1.公差不为0的等差数列{an}的前n项和为Sn,S5=15,且a2,a4,a8成等比数列.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a_3^2}+…+\frac{1}{a_n^2}$,证明:bn<2.

查看答案和解析>>

同步练习册答案