相关习题
 0  245762  245770  245776  245780  245786  245788  245792  245798  245800  245806  245812  245816  245818  245822  245828  245830  245836  245840  245842  245846  245848  245852  245854  245856  245857  245858  245860  245861  245862  245864  245866  245870  245872  245876  245878  245882  245888  245890  245896  245900  245902  245906  245912  245918  245920  245926  245930  245932  245938  245942  245948  245956  266669 

科目: 来源: 题型:解答题

4.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,点P为椭圆C上一点,|PF1|+|PF2|=8$\sqrt{2}$,点F1关于直线x+y=0的对称点A在椭圆上.
(1)求椭圆C的方程;
(2)设线段MN为圆C:x2+(y-3)2=1的直径,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

3.在正方体ABCD-A1B1C1D1中,AC和BD相交O,则平面A1BD与平面A1ADD1的交线是,用符号表示为平面A1BD∩平面A1ADD1=A1D,平面A1BD与平面A1ACC1交线是A1O,用符号表示为平面A1BD∩平面A1ADD1=A1O.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=lnx+x2-2ax+1(a为常数)
(1)讨论函数f(x)的单调性;
(2)若对任意的a∈(1,$\sqrt{2}$),都存在x0∈(0,1]使得不等式f(x0)+lna>m(a-a2)成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2+mx+$\frac{7}{2}$(m<0),直线l与函数f(x)、g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及m的值;
(2)当0<b<a时,求证:f(a+b)-f(2a)<$\frac{b-a}{2a}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,AB,AD,AP两两垂直,长度分别为1,2,2,且$\overrightarrow{DC}$=2$\overrightarrow{AB}$.
(1)求直线PC与BD所成角的余弦值;
(2)求直线PB平面PCD的所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,a1=2,且当n≥2时,满足2an=Sn+n.
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)设bn=n(an+1)(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=2sin(x+$\frac{α}{2}$)cos(x+$\frac{α}{2}$)+2$\sqrt{3}$cos2(x+$\frac{α}{2}$)-$\sqrt{3}$为偶函数,且α∈[0,π].
(1)求函数f(x)的最小正周期;
(2)若对任意的x1,x2∈(0,π),f(x1)=f(x2),求sin(x1+x2)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AD⊥DC,且CD=2,AB=AD=1,∠BCD=45°
(1)若点M是PD的中点,证明:AM∥平面PBC
(2)若△PBC的面积为$\sqrt{2}$,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,四棱锥P-ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.
(Ⅰ)求证:AD⊥CD;
(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.运行如图伪代码,则输出S的结果是$\frac{25}{24}$..

查看答案和解析>>

同步练习册答案