相关习题
 0  245788  245796  245802  245806  245812  245814  245818  245824  245826  245832  245838  245842  245844  245848  245854  245856  245862  245866  245868  245872  245874  245878  245880  245882  245883  245884  245886  245887  245888  245890  245892  245896  245898  245902  245904  245908  245914  245916  245922  245926  245928  245932  245938  245944  245946  245952  245956  245958  245964  245968  245974  245982  266669 

科目: 来源: 题型:解答题

4.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$).
(1)若$\overrightarrow{m}•\overrightarrow{n}$=1,求cos($\frac{2π}{3}$-x)的值;
(2)记f(x)=$\overrightarrow{m}•\overrightarrow{n}$,在△ABC中,角A,B,C的对边分别是a,b,c且满足(2a-c)cosB=bcosC,求f(B)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c
(1)若f(x)满足f(-1)=0.且对任意x∈R,都有x≤f(x)≤x2-x+1恒成立,求a,b,c的值;
(2)在(1)的条件下,是否存在实数k,使函数g(x)=f(x)-kx2在闭区间[-1,2]上递减,要讲述其理由.
(3)设h(x)=lnx+ax2+c-f(x),若y=h(x)得图象与x轴有两个不同的交点A(x1,0),(x2,0),且0<x1<x2,求证:x1x2>e2

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,已知四边形ABCD,EADM,MDCF都是边长为2的正方形,点P,Q分别是ED,AC的中点.
(1)求几何体EMF-ABCD的表面积;
(2)证明:PQ∥平面BEF;
(3)求平面BEF与平面ABCD夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图(1),矩形ABCD中,AB=2AD,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE.且在射线CE上取一点M,使EM=AB,如图(2),求证:DE⊥平面ADM.

查看答案和解析>>

科目: 来源: 题型:解答题

20.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c(x≤0)}\\{2(x>0)}\end{array}\right.$,若f(-2)=f(0),f(-1)=-3,求关于x的方程f(x)=x的解.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知a,b,c是三条不重合的直线,α,β,γ是三个不重合的平面,给出下列命题:
①a∥γ,b∥γ⇒a∥b;②a∥c,c∥α⇒a∥α;③a⊥β,a∥α⇒α⊥β;④a?α,α⊥β⇒a⊥β.
其中正确命题的序号是(  )
A.B.②③C.①②③D.①②④

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知正方形ABCD的边长为8,空间有一点M(不在平面ABCD内)满足|MA|+|MB|=10,则三棱锥A-BCM的体积的最大值是(  )
A.32B.48C.64D.96

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示的几何体中,四边形ABCD为矩形,AD⊥平面AEB,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥C-BGF的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

16.将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为(  )
A.$\frac{1}{6}$a3B.$\frac{{\sqrt{2}}}{12}$a3C.$\frac{{\sqrt{3}}}{12}$a3D.$\frac{{\sqrt{3}}}{6}$a3

查看答案和解析>>

科目: 来源: 题型:解答题

15.四棱锥P-ABCD中,PA⊥底面ABCD,PA=2$\sqrt{3}$,BC=CD=2,∠ACB=∠ACD=$\frac{π}{3}$
(1)求证:BD⊥平面PAC;
(2)求三棱锥P-BDC的体积.

查看答案和解析>>

同步练习册答案