相关习题
 0  245790  245798  245804  245808  245814  245816  245820  245826  245828  245834  245840  245844  245846  245850  245856  245858  245864  245868  245870  245874  245876  245880  245882  245884  245885  245886  245888  245889  245890  245892  245894  245898  245900  245904  245906  245910  245916  245918  245924  245928  245930  245934  245940  245946  245948  245954  245958  245960  245966  245970  245976  245984  266669 

科目: 来源: 题型:选择题

4.若集合A={lg1,lne},B={x∈Z|x2+x≤0},则集合C={z|z=x+y,x∈A,y∈B}所有真子集的个数为(  )
A.3B.7C.8D.15

查看答案和解析>>

科目: 来源: 题型:解答题

3.用数学归纳法证明:若n为大于1的整数,则$\frac{1}{3}$+$\frac{1}{7}$+…+$\frac{1}{{2}^{n}-1}$<n.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在四棱锥P-ABCD中,底面ABCD是一个平行四边形,$\overrightarrow{AB}$=(2,-1,-4),$\overrightarrow{AD}$=(4,2,0),$\overrightarrow{AP}$=(-1,2,-1).
(1)求证:PA⊥底面ABCD;
(2)求四棱锥P-ABCD的体积;
(3)对于向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow{b}$=(x2,y2,z2),$\overrightarrow{c}$=(x3,y3,z3),定义一种运算:
($\overrightarrow{a}$×$\overrightarrow{b}$)$•\overrightarrow{c}$=x1y2z3+x2y3z1+x1y3z2-x2y1z3-x3y2z1
试计算($\overrightarrow{AB}$×$\overrightarrow{AD}$)•$\overrightarrow{AP}$的绝对值的值;说明其与四棱锥P-ABCD体积的关系,并由此猜想向量这一运算($\overrightarrow{AB}$×$\overrightarrow{AD}$)•$\overrightarrow{AP}$的绝对值的几何意义.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如果一个正四棱柱与一个圆柱的体积相等,那么我们称它们是一对“等积四棱圆柱”.将“等积四棱圆柱”的正四棱柱、圆柱的表面积与高分别为S1、S2与h1、h2
(1)若h1=h2=1,S1=6,求S2的值;
(2)若h1=h2,求证:S1>S2
(3)求实数λ的取值范围,使得存在一堆“等积四圆柱”,满足S1=S2与$\frac{{h}_{2}}{{h}_{1}}$=λ.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=ax+x2-xlna(a>1).
(1)求证:函数f(x)在(0,+∞)上单调递增,函数f(x)在(-∞,0)上单调递减;
(2)若关于x的方程|f(x)-m|=1有四个不同的实数根,求实数m的取值范围;
(3)比较f(1)与f(-1)的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

19.函数y=$\frac{\sqrt{4-{x}^{2}}-5}{3x+3}$的值域是{y|y$≥\frac{5+2\sqrt{22}}{9}$,或y$≤\frac{5-2\sqrt{22}}{9}$}.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ)(A≠0,ω≠0),g(x)=Acos(ωx+φ),若对于任意实数x恒有f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x),试求g($\frac{π}{3}$)的值.

查看答案和解析>>

科目: 来源: 题型:填空题

17.(x-1)10的展开式的第6项系数是-252.

查看答案和解析>>

科目: 来源: 题型:解答题

16.求(a2+3b)6的展开式的第3项.

查看答案和解析>>

科目: 来源: 题型:解答题

15.写出(p+q)7的展开式.

查看答案和解析>>

同步练习册答案