相关习题
 0  245822  245830  245836  245840  245846  245848  245852  245858  245860  245866  245872  245876  245878  245882  245888  245890  245896  245900  245902  245906  245908  245912  245914  245916  245917  245918  245920  245921  245922  245924  245926  245930  245932  245936  245938  245942  245948  245950  245956  245960  245962  245966  245972  245978  245980  245986  245990  245992  245998  246002  246008  246016  266669 

科目: 来源: 题型:填空题

19.已知点P是半径为1的⊙O上的动点,线段AB是⊙O的直径.则$\overrightarrow{AB}•\overrightarrow{PA}+\overrightarrow{AB}•\overrightarrow{PB}$的取值范围为[-4,4].

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知数列{an}满足(an+1-1)2=an2-2an+2(n∈N*),则使a2015>2015成立的正整数a1的一个值为2015.

查看答案和解析>>

科目: 来源: 题型:解答题

17.各项均为正数的数列{bn}的前n项和为Sn,且对任意正整数n,都有2Sn=bn(bn+1).
(1)求数列{bn}的通项公式;
(2)如果等比数列{an}共有m(m≥2,m∈N*)项,其首项与公比均为2,在数列{an}的每相邻两项ai与ai+1之间插入i个(-1)ibi(i∈N*)后,得到一个新的数列{cn}.求数列{cn}中所有项的和;
(3)如果存在n∈N*,使不等式 bn+$\frac{1}{b_n}≤(n+1)λ≤{b_{n+1}}+\frac{1}{{{b_{n+1}}}}$成立,求实数λ的范围.

查看答案和解析>>

科目: 来源: 题型:填空题

16.如图,已知点P(2,0),且正方形ABCD内接于⊙O:x2+y2=1,M、N分别为边AB、BC的中点.当正方形ABCD绕圆心O旋转时,$\overrightarrow{PM}•\overrightarrow{ON}$的取值范围为[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目: 来源: 题型:填空题

15.斜率为$\frac{{\sqrt{2}}}{2}$的直线与焦点在x轴上的椭圆x2+$\frac{y^2}{b^2}$=1(b>0)交于不同的两点P、Q.若点P、Q在x轴上的投影恰好为椭圆的两焦点,则该椭圆的焦距为$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知等比数列{an}满足a2=2,a3=1,则$\lim_{n→+∞}({a_1}{a_2}+{a_2}{a_3}+…+{a_n}{a_{n+1}})$=$\frac{32}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.双曲线$\frac{x^2}{4}-\frac{y^2}{12}$=1的两条渐近线的夹角的弧度数为$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数f(x)与时刻x(时)的关系为$f(x)=|{\frac{x}{{{x^2}+1}}-a}|+2a+\frac{3}{4}$,x∈[0,24),其中a是与气象有关的参数,且$a∈[{0\;,\;\frac{1}{2}}]$.若用每天f(x)的最大值为当天的综合污染指数,并记作M(a).
(1)令t=$\frac{x}{{{x^2}+1}}$,x∈[0,24),求t的取值范围;
(2)求M(a)的表达式,并规定当M(a)≤2时为综合污染指数不超标,求当a在什么范围内时,该市市中心的综合污染指数不超标.

查看答案和解析>>

科目: 来源: 题型:填空题

11.在平面直角坐标系xOy中,点列A1(x1,y1),A2(x2,y2),…,An(xn,yn),…,满足$\left\{\begin{array}{l}{x_{n+1}}=\frac{1}{2}({x_n}+{y_n})\;\\{y_{n+1}}=\frac{1}{2}({x_n}-{y_n})\;\end{array}$若A1(1,1),则$\lim_{n→∞}(|O{A_1}|+|O{A_2}|+…+|O{A_n}|)$=$2+2\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.方程sinx+$\sqrt{3}$cosx=0在x∈[0,π]上的解为$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案