相关习题
 0  245825  245833  245839  245843  245849  245851  245855  245861  245863  245869  245875  245879  245881  245885  245891  245893  245899  245903  245905  245909  245911  245915  245917  245919  245920  245921  245923  245924  245925  245927  245929  245933  245935  245939  245941  245945  245951  245953  245959  245963  245965  245969  245975  245981  245983  245989  245993  245995  246001  246005  246011  246019  266669 

科目: 来源: 题型:解答题

9.某市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中度重污染重度污染
天数413183091115
记某企业每天由于空气污染造成的经济损失为S(单位:元),空气质量指数API为ω,在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元.
(Ⅰ)试写出S(ω)表达式;
(Ⅱ)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
非重度污染重度污染合计
供暖季
非供暖季
合计100
附:参考数据与公式:
P(K2≥k)0.250.150.100.050.0250.0100.0050.001
k1.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.某几何体的三视图如图所示,其中正视图是边长为4的正方形,侧视力是矩形,俯视图是半圆,则该几何体的表面积为(  )
A.12πB.12π+16C.D.8π+16

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数f(x)=x2•sinx.给出下列三个命题:
(1)f(x)是定义域为R的奇函数;
(2)f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上单调递增;
(3)对于任意的${x_1},{x_2}∈[{-\frac{π}{2},\frac{π}{2}}]$,都有(x1+x2)[f(x1)+f(x2)]≥0.
其中真命题的序号是(  )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)

查看答案和解析>>

科目: 来源: 题型:解答题

6.对于一组向量$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*),令$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+\overrightarrow{a_3}+…+\overrightarrow{a_n}$,如果存在$\overrightarrow{a_p}$(p∈{1,2,3…,n}),使得|$\overrightarrow{a_p}|≥|\overrightarrow{S_n}-\overrightarrow{a_p}$|,那么称$\overrightarrow{a_p}$是该向量组的“h向量”.
(1)设$\overrightarrow{a_n}$=(n,x+n)(n∈N*),若$\overrightarrow{a_3}$是向量组$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,
求实数x的取值范围;
(2)若$\overrightarrow{a_n}=({(\frac{1}{3})^{n-1}},{(-1)^n})$(n∈N*),向量组$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$是否存在“h向量”?
给出你的结论并说明理由;
(3)已知$\overrightarrow{a_1}、\overrightarrow{a_2}、\overrightarrow{a_3}$均是向量组$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,其中$\overrightarrow{a_1}$=(sinx,cosx),$\overrightarrow{a_2}$=(2cosx,2sinx).设在平面直角坐标系中有一点列Q1,Q2,Q3,…,Qn满足:Q1为坐标原点,Q2为$\overrightarrow{a_3}$的位置向量的终点,且Q2k+1与Q2k关于点Q1对称,Q2k+2与Q2k+1(k∈N*)关于点Q2对称,求|$\overrightarrow{{Q_{2013}}{Q_{2014}}}$|的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=ln(ax+1)-$\frac{2ax}{x+2}$(a>0,a为常数).
(Ⅰ)当0$<a≤\frac{1}{2}$时,求f(x)的单调区间;
(Ⅱ)当x≥0时,若不等式f(x)≥2ln2-$\frac{3}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,a3=5,S3=64,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}≤2-\frac{1}{n}$(n≥1,n∈N).

查看答案和解析>>

科目: 来源: 题型:填空题

3.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C1:ρ=4sinθ,直线C2:$ρcos(θ+\frac{π}{4})$=-2$\sqrt{2}$,则直线C2截圆C1所得的弦长为2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图,矩形OABC的四个顶点坐标依次为O(0,0),A($\frac{π}{2}$,0),B($\frac{π}{2}$,1),C(0,1),记线段OC,CB以及y=sinx(0$≤x≤\frac{π}{2}$)的图象围成的区域(图中阴影部分)为Ω,若向矩形OABC内任意投一点M,则点M落在区域Ω内的概率为(  )
A.$\frac{2}{π}$B.1-$\frac{1}{π}$C.1-$\frac{2}{π}$D.$\frac{π}{2}-1$

查看答案和解析>>

科目: 来源: 题型:填空题

1.在三棱锥P-ABC中,侧棱PA,PB,PC两两垂直,侧面积为2,该三棱锥外接球表面积的最小值为4π.

查看答案和解析>>

科目: 来源: 题型:填空题

20.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加$\frac{16}{29}$尺.(不作近似计算)

查看答案和解析>>

同步练习册答案