相关习题
 0  245859  245867  245873  245877  245883  245885  245889  245895  245897  245903  245909  245913  245915  245919  245925  245927  245933  245937  245939  245943  245945  245949  245951  245953  245954  245955  245957  245958  245959  245961  245963  245967  245969  245973  245975  245979  245985  245987  245993  245997  245999  246003  246009  246015  246017  246023  246027  246029  246035  246039  246045  246053  266669 

科目: 来源: 题型:选择题

7.”直线与抛物线相切”是“直线与抛物线只有一个公共点”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目: 来源: 题型:填空题

6.集合A=$\left\{{x\left|{y=\sqrt{1-x}}\right.}\right\},B=\left\{{x\left|{{y^2}=4x,x∈R}\right.}\right\}$,则A∩B[0,1].

查看答案和解析>>

科目: 来源: 题型:填空题

5.若函数f(x)=sin$\frac{ωx}{2}sin\frac{π+ωx}{2}({ω>0})$的最小正周期为π,则ω=2.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,边长为$\sqrt{2}$的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=$\frac{1}{2}$AB=1,点M在线段EC上.
(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得三棱锥B-CDM的体积为$\frac{{\sqrt{2}}}{18}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$(\sqrt{2},1)$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(3,2)的直线与椭圆C相交于两不同点A、B,且$\overrightarrow{AM}=λ\overrightarrow{BM}$.在线段AB上取点N,若$\overrightarrow{AN}=-λ\overrightarrow{BN}$,证明:动点N在定直线上.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图(1)所示,以线段BD为直径的圆经过A,C两点,且AB=BC=1,BD=2,延长DA,CB交于点P,将△PAB沿AB折起,使点P至点P′位置得到如图(2)所示的空间图形,其中点P′在平面ABCD内的射影恰为线段AD的中点Q.
(Ⅰ)若线段P′B,P′C的中点分别为E,F,试判断A,D,E,F四点是否共面?并说明理由;
(Ⅱ)求平面P′AB与平面P′CD的夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.定义:如果函数f(x)在给定区间[a,b]上存在x0∈(a,b),满足$f({x_0})=\frac{f(b)-f(a)}{b-a}$,则称函数f(x)是[a,b]上的“斜率等值函数”,x0是函数f(x)的一个等值点.例如函数f(x)=x2是[-2,2]上的“斜率等值函数”,0是它的一个等值点.给出以下命题:
①函数f(x)=cosx-1是[-2π,2π]上的“斜率等值函数”;
②若f(x)是[a,b]上的偶函数,则它一定是[a,b]上的“斜率等值函数”;
③若f(x)是[a,b]上的“斜率等值函数”,则它的等值点x0≥$\frac{a+b}{2}$;
④若函数f(x)=x2-mx-1是[-1,1]上的“斜率等值函数”,则实数m的取值范围是(0,2);
⑤若f(x)=lnx是区间[a,b](b>a≥1)上的“斜率等值函数”,x0是它的一个等值点,则$ln{x_0}<\frac{1}{{\sqrt{ab}}}$.
其中的真命题有①④⑤.(写出所有真命题的序号)

查看答案和解析>>

科目: 来源: 题型:填空题

20.在极坐标系中,圆ρ=3上的点到直线$ρ(\sqrt{3}cosθ-sinθ)=2$的距离的最大值为4.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上的动点P到两个焦点的距离之和为6,且到右焦点距离的最小值为$3-2\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l和椭圆C交于M、N两点,A为椭圆的右顶点,$\overrightarrow{AM}•\overrightarrow{AN}=0$,求△AMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图:在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC=AB=$\frac{1}{2}$DE=1,∠DAC=90°,F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE;
(Ⅲ)求三棱锥D-BCE的体积.

查看答案和解析>>

同步练习册答案