相关习题
 0  245893  245901  245907  245911  245917  245919  245923  245929  245931  245937  245943  245947  245949  245953  245959  245961  245967  245971  245973  245977  245979  245983  245985  245987  245988  245989  245991  245992  245993  245995  245997  246001  246003  246007  246009  246013  246019  246021  246027  246031  246033  246037  246043  246049  246051  246057  246061  246063  246069  246073  246079  246087  266669 

科目: 来源: 题型:选择题

1.函数y=x3与y=${(\frac{1}{2})^{x-2}}$图形的交点为(a,b),则a所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,甲船在A处,乙船在A处的南偏东45°方向,距A有4.5海里,并以10海里/小时的速度沿南偏西15°方向航行,若甲船以14海里/小时的速度航行,应沿什么方向,用多少小时能尽快追上乙船?

查看答案和解析>>

科目: 来源: 题型:填空题

19.(理)已知函数y=f(x)与y=f-1(x)互为反函数,又y=f-1(x+1)与y=g(x)的图象关于直线y=x对称,若f(x)是R上的函数,f(x)=ax+x+1(a>1),则g(x)=y=ax+x.

查看答案和解析>>

科目: 来源: 题型:选择题

18.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\sqrt{5}$,则其渐近线方程为(  )
A.y=±2xB.y=$±\sqrt{2}x$C.y=$±\frac{1}{2}x$D.y=$±\frac{{\sqrt{2}}}{2}x$

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,⊙O的半径OB垂直于直径AC,M为线段OA上一点,BM的延长线交⊙O于点N,过点N的切线交CA的延长线于点P.求证:PM2=PA•PC.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,点C是以AB为直径的圆O上不与A、B重合的一个动点,S是圆O所在平面外一点,且总有SC⊥平面ABC,M是SB的中点,AB=SC=2.
(Ⅰ)求证:OM⊥BC;
(Ⅱ)当四面体S-ABC的体积最大时,设直线AM与平面ABC所成的角为α,二面角B-SA-C的大小为β,分别求tanα,tanβ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.如图,延长△ABC的角平分线AD交其外接圆于E,若AD=AB=1,DE=$\sqrt{2}$,则AC=$\sqrt{2}+1$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.记集合T={0,1,2,3,4,5,6},M=$\{\frac{a_1}{7}+\frac{a_2}{7^2}+\frac{a_3}{7^3}+\frac{a_4}{7^4}|{a_i}∈T,i=1,2,3,4\}$,将M中的元素按从大到小的顺序排成数列{bi},并将bi按如下规则标在平面直角坐标系的格点(横、纵坐标均为整数的点)处:点(1,0)处标b1,点(1,-1)处标b2,点(0,-1)处标b3,点(-1,-1)处标b4,点(-1,0)标b5,点(-1,1)处标b6,点(0,1)处标b7,…,以此类推.
(Ⅰ)标b50处的格点坐标为(4,2);
(Ⅱ) b50=$\frac{6}{7}+\frac{5}{7^2}+\frac{6}{7^3}+\frac{6}{7^4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)离心率为$\frac{{2\sqrt{3}}}{3}$,F1(-2,0)、F2(2,0)为其两个焦点,点M是双曲线上一点,且∠F1MF2=60°,则△F1MF2的面积为$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴,圆C的极坐标方程为$ρ=4\sqrt{2}cos(θ+\frac{π}{4})$
(Ⅰ)将圆C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与圆C交于A,B两点,点P的坐标为(2,0),试求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

同步练习册答案