相关习题
 0  245913  245921  245927  245931  245937  245939  245943  245949  245951  245957  245963  245967  245969  245973  245979  245981  245987  245991  245993  245997  245999  246003  246005  246007  246008  246009  246011  246012  246013  246015  246017  246021  246023  246027  246029  246033  246039  246041  246047  246051  246053  246057  246063  246069  246071  246077  246081  246083  246089  246093  246099  246107  266669 

科目: 来源: 题型:解答题

1.已知椭圆E的中心在坐标原点O,它的长轴长,短轴长分别为2a,2$\sqrt{2}$,右焦点F(c,0),直线l:cx-a2=0与x轴相交于点A,$\overrightarrow{OF}=2\overrightarrow{FA}$,过点A的直线m与椭圆E交于P,Q两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若以线段PQ为直径的圆过原点O,求直线m的方程;
(Ⅲ)设$\overrightarrow{AP}=λ\overrightarrow{AQ}({λ>1})$,过点P且平行于直线l的直线与椭圆E相交于另一点M,求证:$\overrightarrow{FM}=-λ\overrightarrow{FQ}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数$f(x)=a({x-\frac{1}{x}})-2lnx,a∈R$.
(Ⅰ)当a=1时,判断函数f(x)是否存在极值,若存在,求出极值;若不存在,说明理由;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知数列{an}的前n项和是Sn,且Sn=2an-n(n∈N*).
(Ⅰ)证明:数列{an+1}是等比数列;
(Ⅱ)记bn=$\frac{{{a_n}+1}}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$两个焦点为分别为${F_1}(-\sqrt{3},0),{F_2}(\sqrt{3},0)$,过点F2的直线l与该双曲线的右支交于M、N两点,且△F1MN是等边三角形,则以点F2为圆心,与双曲线M的渐近线相切的圆的方程为(  )
A.${(x-\sqrt{3})^2}+{y^2}=2$B.${(x-\sqrt{3})^2}+{y^2}=4$C.${(x-\sqrt{3})^2}+{y^2}=1$D.${(x-\sqrt{3})^2}+{y^2}=\frac{3}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.下列四个命题:
①“ax<ay(0<a<1)”成立的充要条件是“ln(x2+1)>ln(y2+1)”;
②命题“若x>y,则-x<-y”的逆否命题是“若-x>-y,则x<y”;
③设$\overrightarrow a,\overrightarrow b$是任意两个向量,则“$\overrightarrow a•\overrightarrow b=|\overrightarrow a||\overrightarrow b|$”是“$\overrightarrow a∥\overrightarrow b$”的充分不必要条件;
④把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移$\frac{π}{8}$个单位即可得到函数$y=sin({-2x+\frac{π}{4}})$(x∈R)的图象.
其中正确命题的个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知点P的极坐标是$(1,\frac{π}{3})$,则过点P且垂直于极轴的直线的极坐标方程是(  )
A.ρ=1B.ρ=cosθC.$ρ=-\frac{1}{cosθ}$D.$ρ=\frac{1}{2cosθ}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.设Sn为公差不为零的等差数列{an}的前n项和,若S5=7a4,则$\frac{{3{S_7}}}{a_3}$=(  )
A.15B.17C.19D.21

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}\right.$,则z=2x-2y-3的取值范围是(  )
A.[-$\frac{1}{3}$,3]B.[-2,3]C.[-$\frac{1}{3}$,3)D.$[-\frac{11}{3},3)$

查看答案和解析>>

科目: 来源: 题型:选择题

13.己知$\frac{a+i}{2i}=\frac{1}{4}b+\frac{1}{2}i(a,b∈R)$.其中i为虚数单位,则a+b=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知数列{an},a1=1,${a_n}=2{a_{n-1}}+1({n≥2,n∈{N^*}})$.
(1)证明{an+1}是等比数列.
(2)若${b_n}=\frac{{{a_n}+1}}{{({{a_n}+2})({{a_n}+3})}}$,求数列{bn}的前n项和Sn
(3)证明$\frac{n}{2}-\frac{1}{3}<\frac{a_1}{a_2}+\frac{a_2}{a_3}+…+\frac{a_n}{{{a_{n+1}}}}<\frac{n}{2}({n∈{N^*}})$.

查看答案和解析>>

同步练习册答案