相关习题
 0  245923  245931  245937  245941  245947  245949  245953  245959  245961  245967  245973  245977  245979  245983  245989  245991  245997  246001  246003  246007  246009  246013  246015  246017  246018  246019  246021  246022  246023  246025  246027  246031  246033  246037  246039  246043  246049  246051  246057  246061  246063  246067  246073  246079  246081  246087  246091  246093  246099  246103  246109  246117  266669 

科目: 来源: 题型:填空题

3.在数列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N+)的个位数,则a2015=2.

查看答案和解析>>

科目: 来源: 题型:填空题

2.以AB为直径的圆内有一内接梯形ABCD,且AB∥CD,以A,B为焦点的椭圆恰好过C,D两点,当梯形ABCD的周长最大时,此椭圆的离心率为$\sqrt{3}$-1.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图,某几何体的三视图均为边长为2的正方形,则该几何体的体积是$\frac{20}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),若向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{c}$=(-4,-7)共线,则λ=2.

查看答案和解析>>

科目: 来源: 题型:解答题

19.各项均为正数的数列{bn}的前n项和为Sn,且对任意正整数n,都有2Sn=bn(bn+1).
(1)求数列{bn}的通项公式;
(2)如果等比数列{an}共有2015项,其首项与公比均为2,在数列{an}的每相邻两项ak与ak+1之间插入k个(-1)kbk(k∈N*)后,得到一个新的数列{cn}.求数列{cn}中所有项的和;
(3)如果存在n∈N*,使不等式 $(n+1)({{b_n}+\frac{8}{b_n}})≤(n+1)λ≤{b_{n+1}}+\frac{20}{{{b_{n+1}}}}$成立,求实数λ的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知点${F_1}(-\sqrt{2},0)、{F_2}(\sqrt{2},0)$,平面直角坐标系上的一个动点P(x,y)满足$|\overrightarrow{P{F_1}}|+|\overrightarrow{P{F_2}}|=4$.设动点P的轨迹为曲线C.
(1)求曲线C的轨迹方程;
(2)点M是曲线C上的任意一点,GH为圆N:(x-3)2+y2=1的任意一条直径,求$\overrightarrow{MG}•\overrightarrow{MH}$的取值范围;
(3)已知点A、B是曲线C上的两个动点,若$\overrightarrow{OA}⊥\overrightarrow{OB}$(O是坐标原点),试证明:直线AB与某个定圆恒相切,并写出定圆的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知向量$\overrightarrow a,\overrightarrow b$,满足$|{\overrightarrow a}|=|{\overrightarrow b}$$|=\overrightarrow a•\overrightarrow b=2$,且$({\overrightarrow a-\overrightarrow c})•({\overrightarrow b-\overrightarrow c})=0$,则|2$\overrightarrow{b}$-$\overrightarrow{c}$|的最小值为$\sqrt{7}$-1.

查看答案和解析>>

科目: 来源: 题型:填空题

16.设F1,F2是曲线$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>0,n>0)的两个焦点,曲线上一点与F1,F2构成的三角形的周长是16,曲线上的点到F1的最小距离为2,则n=4或5.

查看答案和解析>>

科目: 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的体积为(  )
A.48B.$\frac{32}{3}$C.16D.32

查看答案和解析>>

科目: 来源: 题型:选择题

14.在等腰△ABC中,∠BAC=90°,AB=AC=2,$\overrightarrow{BC}=2\overrightarrow{BD}$,$\overrightarrow{AC}=3\overrightarrow{AE}$,则$\overrightarrow{AD}•\overrightarrow{BE}$的值为(  )
A.$-\frac{4}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案