相关习题
 0  245947  245955  245961  245965  245971  245973  245977  245983  245985  245991  245997  246001  246003  246007  246013  246015  246021  246025  246027  246031  246033  246037  246039  246041  246042  246043  246045  246046  246047  246049  246051  246055  246057  246061  246063  246067  246073  246075  246081  246085  246087  246091  246097  246103  246105  246111  246115  246117  246123  246127  246133  246141  266669 

科目: 来源: 题型:解答题

17.已知函数f(x)=$\frac{x}{2ax+1}$.
(1)证明:当x≥0时,e-2x≥($\frac{x}{x+1}$)2+2e-x-1;
(2)设函数g(x)=1-e-x,若当x≥0时,g(x)≤f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在直三棱柱ABC-A1B1C1中,已知AA1=BC=AB=2,AB⊥BC.
(1)求四棱锥A1-BCC1B1的体积;
(2)求二面角B1-A1C-C1的大小.

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图,ABCDEF是正六边形,下列等式成立的是(  )
A.$\overrightarrow{AE}$•$\overrightarrow{FC}$=0B.$\overrightarrow{AE}$•$\overrightarrow{DF}$>0C.$\overrightarrow{FC}$=$\overrightarrow{FD}$+$\overrightarrow{FB}$D.$\overrightarrow{FD}$•$\overrightarrow{FB}$<0

查看答案和解析>>

科目: 来源: 题型:填空题

14.设$\overrightarrow{e_1},\overrightarrow{e_2}$是平面内两个不共线的向量,$\overrightarrow{AB}=(a-1)\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{AC}=b\overrightarrow{e_1}-2\overrightarrow{e_2}$,a>0,b>0.若A,B,C三点共线,则$\frac{1}{a}+\frac{2}{b}$的最小值是4.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=2lnx-x2+ax(a∈R).
(1)若函数f(x)的图象在x=2处切线的斜率为-1,且不等式f(x)≥2x+m在$[\frac{1}{e},\;\;e]$上有解,求实数m的取值范围;
(2)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0),且0<x1<x2,求证:$f'(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的导函数).

查看答案和解析>>

科目: 来源: 题型:解答题

12.某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测评,该班的A、B两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组学生的平均分高1分.
(Ⅰ)若在A,B两组学生中各随机选1人,求其得分均超过86分的概率;
(Ⅱ)若校团委会在该班A,B两组学生得分超过80分的同学中随机挑选3人参加下一轮的参观学习活动,设B组中得分超过85分的同学被选中的个数为随机变量ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

11.如图,在△OAB中,P为线段AB上的一点,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,且$\overrightarrow{BP}$=3$\overrightarrow{PA}$,则(  )
A.x=$\frac{1}{4}$,y=$\frac{3}{4}$B.x=$\frac{1}{3}$,y=$\frac{2}{3}$C.x=$\frac{3}{4}$,y=$\frac{1}{4}$D.x=$\frac{2}{3}$,y=$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图所示的多面体 ABC-EFGH中,AB∥EG,AC∥EH,且△ABC与△EGH相似,AE⊥平面EFGH,EF=FG=$\sqrt{2},GH=1,EH=\sqrt{5},∠EGH={90°}$,且 AC=$\frac{1}{2}$EH,AE=EG
(1)求证,BF⊥EG;
(2)求二面角F-BG-H的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.设a=${∫}_{0}^{π}$(sinx+cosx)dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式的常数项是-160.

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数f(x)=2x-$\frac{lnx+2x-a}{x+1}$.
(1)若f(x)≥3恒成立,求实数a的取值范围;
(2)设F(x)=f(x)ex,若a=-1,求证:F(x)>ln2-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案