相关习题
 0  245972  245980  245986  245990  245996  245998  246002  246008  246010  246016  246022  246026  246028  246032  246038  246040  246046  246050  246052  246056  246058  246062  246064  246066  246067  246068  246070  246071  246072  246074  246076  246080  246082  246086  246088  246092  246098  246100  246106  246110  246112  246116  246122  246128  246130  246136  246140  246142  246148  246152  246158  246166  266669 

科目: 来源: 题型:选择题

7.如图所示,ABCD为矩形,PA⊥平面ABCD,PA=AD,M、N分别是PC、AB中点,则MN与平面PCD所成角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图1,某大风车的半径为2米,每12秒沿逆时针方向匀速旋转一周,它的最低点O离地面1米.风车圆周上一点A从最低点O开始,运动t秒后与地面距离为h米.
(1)直接写出函数h=f(t)的关系式,并在给出的坐标系中用五点作图法作出h=f(t)在[0,12)上的图象(要列表,描点);
(2)A从最低点O开始,沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1
(1)若过点(-2,0)的直线l与圆C1交于A,B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{8}{3}$,求直线l的方程;
(2)设动圆C同时平分圆C1的周长,圆C2的周长,
①证明动圆圆心C在一条直线上运动;
②动圆C是否过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*
(Ⅰ)求f(x)的解析式;
(Ⅱ)若数列{an}满足$\frac{1}{{{a_{n+1}}}}={f^'}(\frac{1}{a_n})$,且a1=4,求数列{an}的通项公式;
(Ⅲ)记bn=$\sqrt{{a_n}{a_{n+1}}}$,数列{bn}的前n项和Tn,求证:$\frac{4}{3}≤{T_n}$<2.

查看答案和解析>>

科目: 来源: 题型:填空题

3.用84个半径为1的球刚好填满一个正四面体容器,则该正四面体的棱长为8$\sqrt{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图的组合体的结构特征是(  ) 
A.一个棱柱中截去一个棱柱B.一个棱柱中截去一个圆柱
C.一个棱柱中截去一个棱锥D.一个棱柱中截去一个棱台

查看答案和解析>>

科目: 来源: 题型:填空题

1.设g(x)=x-1,已知f(x)=$\left\{\begin{array}{l}{2g({x}^{2})-g(x-1),g(2x)≤g(x)}\\{g(x)-g({x}^{2}),g(2x)>g(x)}\end{array}\right.$,若关于x的方程f(x)=m恰有三个互不相等的实根x1,x2,x3,则x12+x22+x32的取值范围是($\frac{6-\sqrt{3}}{8}$,1).

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知集合S={P|P=(x1,x2,x3),xi∈{0,1},i=1,2,3}对于A=(a1,a2,a3),B=(b1,b2,b3)∈S,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,|a3-b3|),定义A与B之间的距离为d(A,B)=$\sum_{i=1}^{3}$|ai-bi|.对于?A,B,C∈S,则下列结论中一定成立的是(  )
A.d(A,C)+d(B,C)=d(A,B)B.d(A,C)+d(B,C)>d(A,B)C.d(A-C,B-C)=d(A,B)D.d(A-C,B-C)>d(A,B)

查看答案和解析>>

科目: 来源: 题型:选择题

19.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点 A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是(  )
①三棱锥P-AA1Q的体积为定值;
②当CQ=$\frac{1}{2}$时,S为等腰梯形;
③当$\frac{3}{4}$<CQ<1时,S为六边形; 
④当CQ=1时,S的面积为$\frac{{\sqrt{6}}}{2}$.
A.①④B.①②③C.②③④D.①②④

查看答案和解析>>

科目: 来源: 题型:解答题

18.“坐标法”是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究图形的几何性质的方法,它是解析几何中是基本的研究方法.请用坐标法证明下面问题:
已知圆O的方程是x2+y2=1,点A(1,0),P、Q是圆O上异于A的两点.证明:弦PQ是圆O直径的充分必要条件是$\overrightarrow{AP}?\overrightarrow{AQ}=0$.

查看答案和解析>>

同步练习册答案