相关习题
 0  245977  245985  245991  245995  246001  246003  246007  246013  246015  246021  246027  246031  246033  246037  246043  246045  246051  246055  246057  246061  246063  246067  246069  246071  246072  246073  246075  246076  246077  246079  246081  246085  246087  246091  246093  246097  246103  246105  246111  246115  246117  246121  246127  246133  246135  246141  246145  246147  246153  246157  246163  246171  266669 

科目: 来源: 题型:解答题

17.如图,已知在长方体ABCD-A1B1C1D1中,AD=A1A=$\frac{1}{2}$AB=2,点E是棱AB上一点,且$\frac{AE}{EB}$=λ.
(1)证明:D1E⊥A1D;
(2)若二面角D1-EC-D的余弦值为$\frac{\sqrt{6}}{3}$,求CE与平面D1ED所成的角.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆C的焦点在x轴上,左右焦点分别为F1、F2,离心率e=$\frac{1}{2}$,P为椭圆上任意一点,△PF1F2的周长为6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点S(4,0)且斜率不为0的直线l与椭圆C交于Q,R两点,点Q关于x轴的对称点为Q1,过点Q1与R的直线交x轴于T点,试问△TRQ的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,已知四边形AA1C1C和AA1B1B都是菱形,平面AA1B1B和平面AA1C1C互相垂直,且∠ACC1=∠BAA1=60°,AA1=2
(Ⅰ)求证:AA1⊥BC1
(Ⅱ)求四面体A-CC1B1的体积;
(Ⅲ)求二面角C-AB-C1的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,已知四棱柱ABD-A1B1C1D1的底面ABCD是直角梯形,AB∥CD,AD⊥CD,侧棱AA1⊥底面ABCD,E是CD的中点,CD=2AB=2AD,AD=1,AA1=$\sqrt{2}$.
(Ⅰ)求证:EA1⊥平面BDC1
(Ⅱ)求二面角D-BC1-D1的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.某校理科实验班的100名学生期中考试的语文数学成绩都不低于100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[100,110),[110,120),[120,130),[130,140),[140,150].这100名学生语文成绩某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示:
分组区间[100,110)[110,120)[120,130)[130,140)
x:y1:22:13:41:1
(Ⅰ)估计这100名学生数学成绩的中位数;
(Ⅱ)从数学成绩在[130,150]的学生中随机选取2人,该2人中数学成绩在[140,150]的人数为X,求X的数学期望EX.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A,B,C,若A,B,C实验成功的概率分别为$\frac{4}{5},\frac{3}{4},\frac{2}{3}$.
(1)对A,B,C实验各进行一次,求至少有一次实验成功的概率;
(2)该项目要求实验A,B各做两次,实验C做3次,如果A实验两次都成功则进行实验B并获奖励10000元,两次B实验都成功则进行实验C并获奖励30000元,3次C实验只要有两次成功,则项目研发成功并获奖励60000元(不重复得奖).且每次实验相互独立,用X表示技术人员所获奖励的数值,写出X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)在抛物线上是否存在不与原点重合的点P,使得过点P的直线交抛物线于另一点Q,满足PF⊥QF,且直线PQ与抛物线在点P处的切线垂直?并请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知f(x)=x2+a(x+lnx),对于任意x,f(x)>(e+1)${\;}^{\frac{a}{2}}$,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.某校进行教工趣味运动会,其中一项目是投篮比赛,规则是:每位教师投二分球四次,投中三个可以再投三分球一次,投中四个可以再投三分球三次,投中球数小于3则没有机会投三分球,所有参加的老师都可以获得一个小奖品,每投中一个三分球可以再获得一个小奖品.某位教师二分球的命中率是$\frac{1}{2}$,三分球的命中率是$\frac{1}{3}$.
(Ⅰ)求该教师恰好投中四个球的概率;
(Ⅱ)记该教师获得奖品数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

8.某校体育教师至少擅长篮球和足球中的一项,现已知有5人擅长篮球,2人擅长足球,从该校的体育教师中随机选出2人,设X为选出的2人中既擅长篮球也擅长足球的人数,已知P(X>0)=$\frac{7}{10}$.
(Ⅰ)求该校的体育教师的人数;
(Ⅱ)求X的分布列并计算X的数学期望与方差.

查看答案和解析>>

同步练习册答案