相关习题
 0  245987  245995  246001  246005  246011  246013  246017  246023  246025  246031  246037  246041  246043  246047  246053  246055  246061  246065  246067  246071  246073  246077  246079  246081  246082  246083  246085  246086  246087  246089  246091  246095  246097  246101  246103  246107  246113  246115  246121  246125  246127  246131  246137  246143  246145  246151  246155  246157  246163  246167  246173  246181  266669 

科目: 来源: 题型:解答题

17.已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为$\sqrt{2}$-1,离心率为e=$\frac{\sqrt{2}}{2}$.
(1)求椭圆E的方程;
(2)过点(1,0)作斜率为k的直线l交E于A、P两点,点B是点A关于直线x轴的对称点,求证直线BP过定点,并求出定点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

16.三棱柱ABC-ABC中,AA1⊥面A1B1C1,且AC=AB=1,∠BAC=90°,E,F分别为BC,CC1的中点,A1F与平面ABC所成的角为45°.
(1)求三棱锥A1-B1EF的体积;
(2)求二面角E-A1B1-F的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在直角坐标系xOy中,已知圆C过点A(0,0)和B(0,4)且与直线x+y-4=0相切,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1与圆C的一个焦点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)试探究:圆C上是否存在异于原点的点Q,使得点Q到椭圆的右焦点F的距离等于线段OF的长?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.若某公司从七位大学毕业生A,B,C,D,E,F,G,中录用两人,这七人被录用的机会均等.
(Ⅰ)用题中字母列举出所有可能的结果;
(Ⅱ)设事件M为“A或B被录用”求事件M发生的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在△AOB中,已知∠AOB=$\frac{π}{2}$,∠BAO=$\frac{π}{6}$,AB=4,D为线段AB的中点,△AOC是由△AOB绕直线AO旋转而成,记二面角B-AO-C的大小为θ.
(1)当平面COD⊥平面AOB时,求θ的值;
(2)当θ=$\frac{2}{3}$π时,求二面角B-OD-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知四棱锥P-ABCD的底面是平行四边形,E、F分别是AD、PC的中点,EF⊥BD,2AP=2AB=AD,∠BAD=60°.
(1)求证:BD⊥面APB;
(2)若AB=PB,求二面角C-BE-F的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

11.若矩阵$(\begin{array}{l}{{a}_{1}}&{{a}_{2}}&{{a}_{3}}&{{a}_{4}}\\{{b}_{1}}&{{b}_{2}}&{{b}_{3}}&{{b}_{4}}\end{array})$满足下列条件:
①每行中的四个数所构成的集合均为{1,2,3,4}中不同元素;
②四列中有且只有两列的上下两数是相同的.
则满足①②条件的矩阵的个数为(  )
A.48B.72C.144D.264

查看答案和解析>>

科目: 来源: 题型:解答题

10.现有8名区级学科竞赛优胜者,其中有语文学科A1、A2、A3,数学学科B1、B2、B3,英语学科C1、C2.从中选出语文、数学、英语学科竞赛优胜者各1名组成一个小组参加市级学科竞赛,已知各学科中每名优胜者被选中的机会均等.
(Ⅰ)列举出组成这个小组所有可能的结果;
(Ⅱ)求A3和B3均没有被选中的概率;
(Ⅲ)求B1和C1中至少有一人被选中的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,已知六棱柱ABCDEF-A1B1C1D1E1F1的侧棱垂直于底面,侧棱长与底面边长都为3,M,N分别是棱AB,AA1上的点,且AM=AN=1.
(1)证明:M,N,E1,D四点共面;
(2)求直线BC与平面MNE1D所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

8.某同学在一次综合性测试中语文、数学、英语、科学、社会5门学科的名次在其所在班级里都不超过3(记第一名为1,第二名为2,第三名为3,依此类推且没有并列名次情况),则称该同学为超级学霸,现根据不同班级的甲、乙、丙、丁四位同学对一次综合性测试名次数据的描述,一定可以推断是超级学霸的是(  )
A.甲同学:平均数为2,中位数为2B.乙同学:中位数为2,唯一的众数为2
C.丙同学:平均数为2,标准差为2D.丁同学:平均数为2,唯一的众数为2

查看答案和解析>>

同步练习册答案