相关习题
 0  246022  246030  246036  246040  246046  246048  246052  246058  246060  246066  246072  246076  246078  246082  246088  246090  246096  246100  246102  246106  246108  246112  246114  246116  246117  246118  246120  246121  246122  246124  246126  246130  246132  246136  246138  246142  246148  246150  246156  246160  246162  246166  246172  246178  246180  246186  246190  246192  246198  246202  246208  246216  266669 

科目: 来源: 题型:解答题

2.P是△ABC内一点,且满足条件$\overrightarrow{AP}$+2$\overrightarrow{BP}$+3$\overrightarrow{CP}$=$\overrightarrow{0}$,设Q为$\overrightarrow{CP}$延长线与AB的交点,令$\overrightarrow{CP}$=p,用p表示$\overrightarrow{CQ}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.数列{an-bn}为等比数列,公比q>0,首项为1,数列{bn}的前n项和Sn,若Sn=$\frac{n}{2(n+2)}$(n∈N+),a3=$\frac{81}{20}$.
(1)求数列{bn}的通项公式;
(2)求数列{an}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

20.某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费x与旅游收入y(单位:万元)之间有如表对应数据:
x24568
y3040605070
(Ⅰ)求旅游收入y对广告支出费x的线性回归方程y=bx+a,若广告支出费为12万元,预测旅游收入;
(Ⅱ)在已有的五组数据中任意抽取两组,根据(Ⅰ)中的线性回归方程,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{\;}$$\overline{x}$,$\overline{y}$为样本平均值.
参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{i}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x+2y-2≤0}\\{kx-y-2k≤0}\end{array}\right.$,其中k>0,若z=$\frac{1}{3}$x+y的最小值为0,则k=1.

查看答案和解析>>

科目: 来源: 题型:填空题

18.曲线f(x)=x2sinx在点(π,f(π))处的切线的纵截距为π3

查看答案和解析>>

科目: 来源: 题型:选择题

17.鹰潭市某学校计划招聘男教师x名,女教师y名,x和y须满足约束条件$\left\{\begin{array}{l}{2x-y≥5}\\{x-y≤2}\\{x<6}\end{array}\right.$,则该校招聘的教师最多(  )名.
A.7B.8C.10D.13

查看答案和解析>>

科目: 来源: 题型:解答题

16.设函数f(x)=|x-4|+|x-a|
(1)若f(x)的最小值为3,求a的值;
(2)当a=1时,若g(x)=$\frac{2x-1}{f(x)+2m}$的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在极坐标系中,直线l:ρcosθ=$\frac{1}{2}$与曲线C:ρ=2cosθ相交于A、B两点,O为极点.
(1)求∠AOB的大小.
(2)设把曲线C向左平移一个单位再经过伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=y}\end{array}\right.$得到曲线C′,设M(x,y)为曲线C′上任一点,求x2-$\sqrt{3}$xy+2y2的最小值,并求相应点M的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,A、B是圆O上的两点,∠AOB=120°,C是AB弧的中点.
(1)求证:AB平分∠OAC;
(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知f(x)=x3-9x2cosα+48xcosβ+18sin2α,g(x)=f′(x),且对任意的实数t均有g(1+e-|t|)≥0,g(3+sint)≤0.
(1)求cosα+2cosβ的值.
(2)若φ(x)=$\frac{1}{3}$x3-2x2cosβ+xcosα,设h(x)=lnφ′(x),对于任意的x∈[0,1],不等式h(x+1-m)<h(2x+2)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案