相关习题
 0  246024  246032  246038  246042  246048  246050  246054  246060  246062  246068  246074  246078  246080  246084  246090  246092  246098  246102  246104  246108  246110  246114  246116  246118  246119  246120  246122  246123  246124  246126  246128  246132  246134  246138  246140  246144  246150  246152  246158  246162  246164  246168  246174  246180  246182  246188  246192  246194  246200  246204  246210  246218  266669 

科目: 来源: 题型:选择题

2.复数i(1+i)(i为虚数单位)的共轭复数是(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=x2-(2a+1)x+alnx,a∈R
(1)当a=1,求f(x)的单调区间;
(2)a>1时,求f(x)在区间[1,e]上的最小值;
(3)g(x)=(1-a)x,若$?{x_0}∈[{\frac{1}{e},e}]$使得f(x0)≥g(x0)成立,求a的范围.

查看答案和解析>>

科目: 来源: 题型:填空题

20.某高中共有学生2000名,各年级男、女生人数如下表,已知在全校学生中随机抽取1人,抽到高二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则在高三年级应抽取16名学生.
高一高二高三
女生373mn
男生377370p

查看答案和解析>>

科目: 来源: 题型:选择题

19.若实数a,b满足a2+b2≤1,则关于x的方程x2-2x+a+b=0有实数根的概率是(  )
A.$\frac{3}{4}+\frac{1}{2π}$B.$\frac{3}{4}+\frac{1}{π}$C.$\frac{3}{5}+\frac{1}{2π}$D.$\frac{3}{5}+\frac{1}{π}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.设α为锐角,若cosα=$\frac{4}{5}$,则sin2α的值为(  )
A.$\frac{12}{25}$B.$\frac{24}{25}$C.$-\frac{24}{25}$D.$-\frac{12}{25}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,-4),若$\overrightarrow a$∥$\overrightarrow b$,则x=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知集合M={0,1},N={-1,0},则M∩N=(  )
A.{-1,0,1}B.{-1,1}C.{0}D.φ

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知f(x)=mx-alnx-m,g(x)=$\frac{ex}{e^x}$,其中m,a均为实数,
(1)求g(x)的极值;
(2)设m=1,a=0,求证对$?{x_1},{x_2}∈[{3,4}]({x_1}≠{x_2}),|{f({x_2})-f({x_1})}|<|{\frac{{e{x_2}}}{{g({x_2})}}-\frac{{e{x_1}}}{{g({x_1})}}}$|恒成立;
(3)设a=2,若对?给定的x0∈(0,e],在区间(0,e]上总存在t1,t2(t1≠t2)使得f(t1)=f(t2)=g(x0)成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,(a>b>0)的离心率e=$\frac{{\sqrt{6}}}{3}$,直线y=x与椭圆交于A,B两点,C为椭圆的右顶点,$\overrightarrow{OA}•\overrightarrow{OC}=\frac{3}{2}$
(1)求椭圆的方程;
(2)若椭圆上存在两点E,F使$\overrightarrow{OE}+\overrightarrow{OF}=λ\overrightarrow{OA}$,λ∈(0,2),求△OEF面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知数列{an}的前项n和为Sn,点(n,Sn)(n∈N*)均在函数f(x)=3x2-2x的图象上.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3}{{{a_n}{a_{n+1}}}},{T_n}$是数列{bn}的前n项和,求使得2Tn≤λ-2015对所有n∈N*都成立的实数λ的范围.

查看答案和解析>>

同步练习册答案