相关习题
 0  246026  246034  246040  246044  246050  246052  246056  246062  246064  246070  246076  246080  246082  246086  246092  246094  246100  246104  246106  246110  246112  246116  246118  246120  246121  246122  246124  246125  246126  246128  246130  246134  246136  246140  246142  246146  246152  246154  246160  246164  246166  246170  246176  246182  246184  246190  246194  246196  246202  246206  246212  246220  266669 

科目: 来源: 题型:解答题

3.若函数f(x)的图象从左到右先增后减,则称函数f(x)为“∩型函数”,图象的最高点的横坐标称为“∩点”.
(1)分别判断函数f(x)=lnx-x与函数g(x)=x2-3x+lnx是否为“∩型函数”.若是,求出它的“∩点”,若不是,试说明理由.
(2)若关于x的方程g(x)+b=0在区间[$\frac{1}{2}$,2]上恰有两个不相等的实数根,求实数b的取值范围;
(3)证明:$\sum_{i=1}^{n}$$\frac{(k-1)^{2}}{{k}^{2}}$-3×$\sum_{i=1}^{n}$$\frac{k-1}{k}$<lnn-n+1.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在△ABC中,∠B=90°,D、E两点在AB上,且AD=2BE,∠ACD=∠BCE,求线段BE,DE与CE的数量关系.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知:求所有实数k,使得存在△ABC,满足
(1)a+b=kc;
(2)cot$\frac{A}{2}$+cot$\frac{B}{2}$=kcot$\frac{C}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=x-aex(a为实常数).
(1)若函数f(x)在x=0的切线与x轴平行,求a的值;
(2)若f(x)有两个零点x1、x2,求证:x1+x2>2.

查看答案和解析>>

科目: 来源: 题型:填空题

18.甲、乙两人在理论考试中“合格”的概率依次为$\frac{4}{5}$,$\frac{2}{3}$,在操作考试中“合格”概率依次为$\frac{1}{2}$,$\frac{5}{6}$,所有考试是否合格,相互之间没有影响,则甲、乙进行两项考试后,恰有1人两部分考试都合格的概率是$\frac{23}{45}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知过某定圆上的每一点均可以作两条相互垂直的直线与椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的公共点都各只有一个,那么该定圆的方程为x2+y2=25.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知在△AOB(O为坐标原点)中,$\overrightarrow{OA}$=(cosα,sinα),$\overrightarrow{OB}$=(2cosβ,2sinβ),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,则△AOB的面积为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.2$\sqrt{3}$D.1

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角是120°,$\overrightarrow{OA}$、$\overrightarrow{OC}$的夹角为30°,$\overrightarrow{OC}$=5,$\overrightarrow{OA}$、$\overrightarrow{OB}$表示$\overrightarrow{OC}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知线段AB的端点B的坐标为(1,3),端点A在圆C:(x+1)2+y2=4上运动,求线段AB的中点M的轨迹.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知a>0,b>0,c>0,$\frac{1}{{a}^{3}}$+$\frac{1}{{b}^{3}}$+$\frac{1}{{c}^{3}}$+3abc的最小值为m.
(Ⅰ)求m的值;
(Ⅱ)解关于x的不等式|x+1|-2x<m.

查看答案和解析>>

同步练习册答案