相关习题
 0  246064  246072  246078  246082  246088  246090  246094  246100  246102  246108  246114  246118  246120  246124  246130  246132  246138  246142  246144  246148  246150  246154  246156  246158  246159  246160  246162  246163  246164  246166  246168  246172  246174  246178  246180  246184  246190  246192  246198  246202  246204  246208  246214  246220  246222  246228  246232  246234  246240  246244  246250  246258  266669 

科目: 来源: 题型:解答题

8.直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°,求点B到平面AC1的距离及二面角B-CC1-A的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点在直线l:x-1=0上,且离心率e为$\frac{1}{2}$.
(1)求该椭圆的方程;
(2)若P与Q是该椭圆上不同的两点,且弦PQ的中点T在直线l上,试证:x轴上存在点R,对于所有满足条件的P与Q,恒有|RP|=|RQ|.

查看答案和解析>>

科目: 来源: 题型:解答题

6.过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1左焦点F的直线l交椭圆于A,B两点,证明$\frac{1}{|AF|}$+$\frac{1}{|BF|}$为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)当a=1时,求函数f(x)的单调区间;
(2)若函数g(x)=f(x)+2x在[$\frac{1}{2}$,+∞)单调递增,求a的取值范围;
(3)当n∈N*,试比较($\frac{n}{n+1}$)n(n+1)与($\frac{1}{e}$)n+2的大小,并证明.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知f(x)=ax3+bx2+cx+d(a≠0)是R上的函数,其图象交x轴于A、B、C三点,且点B的坐标为(2,0),若函数f(x)在[-2,0]和[5,7]上均为单调函数,且f(x)在[-2,0]和[5,7]上的单调性相同,在[0,3]和[5,7]上的单调性相反.
(1)求实数c的值,并用a、b表示d;
(2)证明:曲线y=f(x)上不存在点M,使曲线在点M处的切线与直线x+3by+a=0垂直.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知关于x的函数f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx,其中m∈R,其在(1,0)处的切线所对应函数g(x)同时满足g(x)-g(-x)=0,g(x)+g(-x)=0
(1)已知函数f(x)的图象与直线y=k2-2k无公共点,求实数k的取值范围
(2)已知p≤0,若对任意的x∈[1,2],总有成立f(x)≥$\frac{(p-2)x}{2}+\frac{p+2}{2x}+2x-{x}^{2}$,求P的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|;
(3)设函数g(x)=$\left\{\begin{array}{l}{{f}^{′}(x),f(x)≥{f}^{′}(x)}\\{f(x),f(x)<{f}^{′}(x)}\end{array}\right.$,求g(x)在x∈[2,4]时的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.在三维空间直角坐标系中,对其中任何一向量$\overrightarrow{x}$=(x1,x2,x3),定义范数||x||,它满足以下性质:
①||x||≥0,当且仅当x为零向量时,不等式取等号;
②对任意实数λ,||λx||=|λ|•||x||(注:此处点乘号为普通的乘号,无点乘意义);
③||x||+||y||≥||x+y||.
试求解以下问题:
在二维平面直角坐标系中,有向量$\overrightarrow{x}$=(x1,x2),下面给出的几个表达式中,可能表示向量$\overrightarrow{x}$的范数是②⑤(把所有正确的答案的序号都填上).
①$\sqrt{{{x}_{1}}^{2}}$+2x22
②$\sqrt{{{x}_{1}}^{2}+2{{x}_{2}}^{2}}$;
③$\sqrt{2{{x}_{1}}^{2}-{{x}_{2}}^{2}}$;
④$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2}$;
⑤$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.(x+$\frac{a}{x}$)n(a∈N+,n∈N+,且n>a)的展开式中,首末两项的系数之和为65,则展开式的中间项为(  )
A.120x3B.160x2C.120D.160

查看答案和解析>>

科目: 来源: 题型:解答题

20.设a,b,c>0,a+b+c=1,求证:$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$≤3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案