相关习题
 0  246065  246073  246079  246083  246089  246091  246095  246101  246103  246109  246115  246119  246121  246125  246131  246133  246139  246143  246145  246149  246151  246155  246157  246159  246160  246161  246163  246164  246165  246167  246169  246173  246175  246179  246181  246185  246191  246193  246199  246203  246205  246209  246215  246221  246223  246229  246233  246235  246241  246245  246251  246259  266669 

科目: 来源: 题型:填空题

18.已知等差数列{an}的公差d≠0,首项a1=4,且a1,a5,a13依次成等比数列,则该数列的通项公式an=n+3,数列$\{{2^{a_n}}\}$的前6项和为1008.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知顶点在原点的抛物线的焦点与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点F重合,过抛物线准线与x轴交点E作直线l与抛物线相交于两个不同的点M、N
(1)求抛物线的标准方程;
(2)当以线段MN为直径的圆经过点F时,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

16.下列命题中正确命题的个数是(  )
(1)将一组数据中的每个数据都减去同一个数后,平均数与方差均没有变化;
(2)在回归直线$\widehat{y}$=1+2x中,x增加1个单位时,y一定减少2个单位;
(3)若p且q为假命题,则p,q均为假命题;
(4)命题p:?x0∈R,使得x02+x0+1<0,则¬p:?x∈R,均有x2+x+1≥0;
(5)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=P0,则$P(-1<ξ<0)=\frac{1}{2}-{P_0}$.
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:解答题

15.定义在(0,+∞)上的三个函数f (x),g(x),h(x),已知f(x)=lnx,g(x)=x2-af(x)
h(x)=x-a$\sqrt{x}$,且g(x)在x=1处取得极值.
(Ⅰ)求a的值及h(x)的单调区间;
(Ⅱ)求证:当1<x<e2时,恒有x<$\frac{2+f(x)}{2-f(x)}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知函数f(x)=$\frac{lnx}{{x}^{2}}$-x-$\frac{k}{x}$+2e有且只有一个零点,则k的值为(  )
A.e+$\frac{1}{{e}^{2}}$B.e2+$\frac{1}{e}$C.e2+$\frac{1}{{e}^{2}}$D.e+$\frac{1}{e}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.若实数a,b,c,d满足(b+a2-3lna)2+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为(  )
A.$\sqrt{2}$B.8C.$2\sqrt{2}$D.2

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=ax2+8x+b,g(x)=(a-1)x2+2(4-a)x.
(1)若h(x)=f(x)-g(x)在区间[1,2]内有两个不同的零点,求4a+5b的取值范围;
(2)若b=3,对于给定的负数a,有一个最大的正数l(a),使得在整个区间[0,l(a)]上,不等式|f(x)|≤5都成立,试求l(a)的解析式,并求l(a)的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1上的点.试确定D的位置,使得DC1⊥平面DBC,并求此时二面角A-BD-C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在矩形ABCD中,AB=4,BC=3,E为DC的中点,沿AE将△AED折起,使二面角D-AE-B为60.
(1)求DE与平面AC所成角的大小;
(2)求二面角D-EC-B的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{2}}{2}$,直线x+y=$\frac{\sqrt{6}}{2}$与圆E:x2+y2=b2相交于M、N两点,O为原点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若直线l1:x=1与C交于A、B,直线l2:y=kx+m与圆E相切,且l2与线段AB相交,与椭圆C交于P、Q两点,求四边形APBQ的面积最大值.

查看答案和解析>>

同步练习册答案