相关习题
 0  246164  246172  246178  246182  246188  246190  246194  246200  246202  246208  246214  246218  246220  246224  246230  246232  246238  246242  246244  246248  246250  246254  246256  246258  246259  246260  246262  246263  246264  246266  246268  246272  246274  246278  246280  246284  246290  246292  246298  246302  246304  246308  246314  246320  246322  246328  246332  246334  246340  246344  246350  246358  266669 

科目: 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴长为2$\sqrt{3}$,且2a,2b,3c成等比数列.设F1、F2是椭圆的左、右焦点,过F2的直线与y轴右侧椭圆相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△F2PQ面积的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.设区域Ω内的点(x,y)满足 $\left\{\begin{array}{l}{x^2+y^2+6x+6y+2<0}\\{x^2-y^2+6x-6y<0}\end{array}\right.$,则区域Ω的面积是8π;若x,y∈Z,则2x+y的最大值是-2.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设函数f(x)=ax3+bx2+cx,在x=1和x=-1处有极值,且f(1)=-1,求f(x)表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象与x轴的两个交点坐标分别为($\frac{π}{3}$,0)和($\frac{5}{6}$π,0),其部分图象如图所示.
(1)求函数y=f(x)的初相、相位、振幅;
(2)函数y=sinx的图象经过怎样的变化可得到y=f(x)的图象?
(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,4π]内的所有实数根之和.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,焦点在x轴上的椭圆C1和焦点在y轴上的椭圆C2相切于点(0,2)、(0,-2),且椭圆C1,C2的离心率均为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C1,C2的方程;
(Ⅱ)设椭圆C2的左、右顶点为A1,A2,过A1的直线l与椭圆C1,C2分别交于点M,N和A1,B(异于A2),若$\overrightarrow{B{A}_{2}}$•$\overrightarrow{M{A}_{2}}$=0,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

20.(理)从0,1,2,3,4这5个数中取3个数,记中位数是ξ,则数学期望E(ξ)=2.

查看答案和解析>>

科目: 来源: 题型:选择题

19.设P(x,y)是函数y=f(x)的图象上一点,向量$\overrightarrow{a}$=(1,(x-2)5),$\overrightarrow{b}$=(1,y-2x),且满足$\overrightarrow{a}$∥$\overrightarrow{b}$,数列{an}是公差不为0的等差数列,若f(a1)+f(a2)+…+f(a9)=36,则a1+a2+…+a9=(  )
A.0B.9C.18D.36

查看答案和解析>>

科目: 来源: 题型:解答题

18.设函数f(n)=(1+$\frac{1}{n}$)n-n,其中n为正整数.
(1)求f(1)、f(2)、f(3)的值;
(2)猜想满足不等式f(n)<0的正整数n的范围,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队只比赛一场),共有高一、高二、高三三个队参赛,高一胜高二的概率为$\frac{1}{2}$,高一胜高三的概率为$\frac{2}{3}$,高二胜高三的概率为P,每场胜负独立,胜者记1分,负者记0分,规定:积分相同者高年级获胜.
(Ⅰ)若高三获得冠军概率为$\frac{1}{3}$,求P.
(Ⅱ)记高三的得分为X,求X的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=sin(2ωx-$\frac{π}{6}$)+2cos2ωx-1(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{2}$.
(1)求ω的值;
(2)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域;
(3)若f(a)=$\frac{1}{3}$,求sin($\frac{7π}{6}$-4a)的值.

查看答案和解析>>

同步练习册答案