相关习题
 0  246194  246202  246208  246212  246218  246220  246224  246230  246232  246238  246244  246248  246250  246254  246260  246262  246268  246272  246274  246278  246280  246284  246286  246288  246289  246290  246292  246293  246294  246296  246298  246302  246304  246308  246310  246314  246320  246322  246328  246332  246334  246338  246344  246350  246352  246358  246362  246364  246370  246374  246380  246388  266669 

科目: 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$ax2+(1-a)x-lnx,其中a>-1.
(Ⅰ)若f(x)有两个极值点,求实数a的取值范围;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)证明:当-1<a<0时,方程f(x)=0有且只有一个实数根.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$ax2+(1-a)x+ln$\frac{1}{x}$.
(Ⅰ)若f(x)有两个极值点,求实数a的取值范围;
(Ⅱ)当-1<a≤2时,讨论函数f(x)的零点个数.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设数列{an}满足3a1+32a2+…+3nan=$\frac{{n}^{2}+pn}{2}$(n∈N*,p∈R)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn<$\frac{5}{4}$成立,求证实数p的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.设函数f(x)=lnx+$\frac{a(x+2)}{x}$,a∈R.
(1)当a=1时,求f(x)的极小值;
(2)讨论函数g(x)=f′(x)-$\frac{x}{6}$零点的个数;
(3)若对任意m>n>0,$\frac{f(m)-f(n)}{m-n}$<1恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=$\frac{3x}{2x+1}$,数列{an}满足:a1=$\frac{3}{2}$,且an=f(an-1)(n∈N*,n≥2)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:a1a2a3…an<2.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E,F分别为PC,CD的中点.
(1)证明:AB⊥平面BEF;
(2)设PA=kAB,若平面EBD与平面BDC的夹角是大于45°的锐角,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,ABCD为梯形,PD⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°DC=2AB=2a,DA=$\sqrt{3}$A,PD=$\sqrt{3}$a,E为BC中点,连结AE,交BD于O.
(Ⅰ)平面PBD⊥平面PAE
(Ⅱ)求二面角D-PC-E的大小(若非特殊角,求出其余弦即可)

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$,
①求异面直线PB与AD所成角的正弦值;
②求二面角E-AF-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,PA=AB,点E是PD的中点,作EF⊥PC交PC于F.
(Ⅰ)求证:PB∥平面EAC;
(Ⅱ)求证:PC⊥平面AEF;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知A(1,0,0),B(0,2,0),C(0,0,3),则原点O到面ABC的距离为$\frac{6}{7}$.

查看答案和解析>>

同步练习册答案