相关习题
 0  246202  246210  246216  246220  246226  246228  246232  246238  246240  246246  246252  246256  246258  246262  246268  246270  246276  246280  246282  246286  246288  246292  246294  246296  246297  246298  246300  246301  246302  246304  246306  246310  246312  246316  246318  246322  246328  246330  246336  246340  246342  246346  246352  246358  246360  246366  246370  246372  246378  246382  246388  246396  266669 

科目: 来源: 题型:解答题

9.如图,四面体ABCD的各棱长均为a,E、F分别是AB、CD的中点.
(1)证明:线段EF是异面直线AB与CD的公垂线段;
(2)求异面直线AB与CD的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,已知四棱锥P-ABCD,底面是边长为2的正方形,PA⊥底面ABCD,M、N分别为AD、BC的中点,MQ⊥PD于Q,直线PC与平面PBA所成的角的正弦为$\frac{\sqrt{3}}{3}$.
(1)求PA的长;
(2)求二面角P-MN-Q的大小;
(3)求点M到平面PNQ的距离.

查看答案和解析>>

科目: 来源: 题型:填空题

7.如图,长方体ABCD-A1B1C1D1中,AA1=$\sqrt{3}$,AD1=$\sqrt{5}$,AB1=$\sqrt{7}$,则长方体的对角线AC1长等于3.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点,设λ=$\frac{AE}{AB}$
(1)求证:DA1⊥ED1
(2)若直线DA1与平面CED1所成角为30°,求λ的值
(3)当点E在棱AB上移动时,是否存在某个确定的位置使得平面A1DCB1与平面CED1所成二面角为60°,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,已知直三棱锥ABC-A1B1C1中,AC=BC=2,且AC⊥BC,点D是A1B1中点.
(1)求证:平面CC1D⊥平面A1ABB1
(2)若异面直线CD与BB1所成角的正切值为$\frac{\sqrt{2}}{2}$,求点C1到平面A1CD的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

4.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)若f(0)=0时,求函数f(x)的解析式.
(2)若对于任意的x∈[0,3],都有f(x)≥c2成立,求c的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x+$\frac{8}{3}$.
(1)求f(x)的单调递减区间,
(2)求f(x)在区间[-3,3]上的极大值和极小值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在三棱柱BCG-ADE中,四边形ABCD为正方形,AE⊥平面CDE,AE=DE=2,FD=EF.
(Ⅰ)求证:BE∥平面ACF;
(Ⅱ)求二面角B-CF-A的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知直三棱柱ABC-A1B1C1中,∠ABC=90°,AC=AA1=2$\sqrt{2}$,AB=2,M为BB1的中点,则B1与平面ACM的距离为1.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知四棱锥S-ABCD中,底面ABCD是边长为2的正方形,侧棱SD⊥底面ABCD,且SD=4,E为侧棱SC的中点.
(1)求证:SA∥平面EDB;
(2)求二面角E-DB-C余弦值的大小.

查看答案和解析>>

同步练习册答案