相关习题
 0  246213  246221  246227  246231  246237  246239  246243  246249  246251  246257  246263  246267  246269  246273  246279  246281  246287  246291  246293  246297  246299  246303  246305  246307  246308  246309  246311  246312  246313  246315  246317  246321  246323  246327  246329  246333  246339  246341  246347  246351  246353  246357  246363  246369  246371  246377  246381  246383  246389  246393  246399  246407  266669 

科目: 来源: 题型:选择题

4.正方体ABCD-A1B1C1D1的面BCC1B1内有一点M,满足M到点B的距离等于点M到面CDD1C1的距离,则点M的轨迹是(  )
A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆的C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{1}{2}$,长轴长为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l过点D(4,0)与椭圆C交于A、B两点.
①求△AOB面积的最大值(O为坐标原点)并求取最大值时直线l的方程;
②若E为椭圆C的左顶点,M(1,0),试问∠AMD=∠BME是否一定成立?如果成立请给出证明否则说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

2.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,PD=AD=DC=2AB,则异面直线PC与AB所成角的大小为$\frac{π}{4}$;直线PB与平面PDC所成角的正弦值为$\frac{2}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在如图所示的几何体中,四边形ABCD是正方形,EA⊥底面ABCD,EF∥AD,且AB=6,AE=3$\sqrt{2}$,EF=3.
(Ⅰ)若AC与BD交于点O,求证:EO∥平面FCD;
(Ⅱ)求证:DE⊥平面ABF;
(Ⅲ)求二面角A-FD-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.在直三棱柱ABC-A′B′C′中,底面是边长为a的正三角形,AA′=$\sqrt{3}$a,则直线AB′与侧面AC′所成角的正切值为$\frac{\sqrt{39}}{13}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,E为正方体的棱AA1中点,F为棱AB上一点,且∠C1EF=90°,则|AF|:|FB|=1:3.

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,正方体ABCD-A1B1C1D1的棱长为2,M,N分别是C1D1,CC1的中点,则直线B1N与平面BDM所成角的正弦值为$\frac{{\sqrt{5}}}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.如图,在直三棱柱ABC-A1B1C1中,BC=CC1=2a,∠CAB=90°,AC=$\sqrt{2}$a.则点B到平面AB1C的距离为$\frac{{2\sqrt{3}a}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的左右焦点分别为F1(-1,0)、F2(1,0),且过点E(-$\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$),过原点O且斜率为k(k≠0)的直线l与椭圆C交于P、Q两点,A、B为椭圆的左、右顶点,直线AP、AQ分别与椭圆的右准线交于M、N两点.
(1)求椭圆C的方程;
(2)证明:直线PA与直线PB的斜率之积是定值;
(3)证明:以MN为直径的圆经过椭圆内的一个定点.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知矩形ABCD中,AB=1,BC=$\sqrt{3}$,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

同步练习册答案