相关习题
 0  246224  246232  246238  246242  246248  246250  246254  246260  246262  246268  246274  246278  246280  246284  246290  246292  246298  246302  246304  246308  246310  246314  246316  246318  246319  246320  246322  246323  246324  246326  246328  246332  246334  246338  246340  246344  246350  246352  246358  246362  246364  246368  246374  246380  246382  246388  246392  246394  246400  246404  246410  246418  266669 

科目: 来源: 题型:填空题

4.正四面体ABCD的棱长为a,EFG分别是AB,AC,CD的中点,截面EFG交棱BD于H则点A到截面EFGH的距离是$\frac{\sqrt{2}}{2}a$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,四棱锥P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点.
(Ⅰ)求证:面PDE⊥面PAB;
(Ⅱ)若PA=AB=2,求PC与面PAD所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,
(1)求证AF⊥BC
(2)求线段AF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在四棱锥PABCD中,底面ABCD是直角梯形,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.
(1)求证:DE∥平面PBC;
(2)求二面角EBDA的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

20.如图,在四棱锥PABCD中,四边形ABCD为平行四边形,且BC⊥平面PAB,PA⊥AB,M为PB的中点,PA=AD=2.若AB=1,则二面角BACM的余弦值为(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{2}}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面ACC1A1所成的角的正弦值为(  )
A.$\frac{{\sqrt{6}}}{4}$B.-$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{10}}}{4}$D.-$\frac{{\sqrt{10}}}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知在四棱锥P-ABCD中,底面ABCD是等腰梯形,AD∥BC,∠BAD=60°,PA⊥平面ABCD,AD=2,BC=1,PA=2$\sqrt{2}$,H,G分别为AD,PC的中点.
(Ⅰ)求证:PH∥平面GBD
(Ⅱ)求二面角G-BD-A平面角的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示,平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2
(Ⅰ)求证:AF∥平面CDE;
(Ⅱ)求二面角F-AE-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)若AA1=$\frac{{\sqrt{3}}}{2}$AB,求二面角C1-AD-C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求二面角B-AE-C的正切值;
(Ⅲ)求直线EC与平面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案