相关习题
 0  246258  246266  246272  246276  246282  246284  246288  246294  246296  246302  246308  246312  246314  246318  246324  246326  246332  246336  246338  246342  246344  246348  246350  246352  246353  246354  246356  246357  246358  246360  246362  246366  246368  246372  246374  246378  246384  246386  246392  246396  246398  246402  246408  246414  246416  246422  246426  246428  246434  246438  246444  246452  266669 

科目: 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{|x+1|,x≤0}\\{lnx,x>0}\end{array}\right.$,则当实数m变化时,方程f(f(x)))=m的根的个数不可能为(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:选择题

13.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,如图所示,则将y=f(x)的图象向右平移$\frac{π}{3}$个单位后,得到的图象解析式为(  )
A.y=sin(2x-$\frac{π}{6}$)B.y=cos2xC.y=sin(2x+$\frac{5π}{6}$)D.y=-cos2x

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知直线l,m和平面α,β,下列命题中正确的是(  )
A.若l∥α,l∥β,则α∥βB.若l∥α,m?α,则l∥mC.若α⊥β,l∥α,则l⊥βD.若l⊥α,m?α,则l⊥m

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知实数a,b,则“$\sqrt{a}$<$\sqrt{b}$”是“lna<lnb”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知集合A={x|y=2x},B={y|y=$\sqrt{{x}^{2}-4x+3}$},则A∩B=(  )
A.{x|x>0}B.{x|x≥0}C.{x|x≥3或x≤1}D.{x|x≥3或0≤x≤1}

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=x2+ax+b,g(x)=2x+a(a,b∈R),且函数f(x)与g(x)的图象至多有一个公共点.
(Ⅰ)证明:当x≥0时,f(x)≤(x+b)2
(Ⅱ)若不等式f(a)-f(b)≥L(a2-b2)对题设条件中的a,b总成立,求L的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知数列{an}中,a1=a(实数a为常数),a2=2,Sn是其前n项和,且Sn=$\frac{n({a}_{n}-{a}_{1})}{2}$.数列{bn}是等比数列,b1=2,a4恰为S4与b2-1的等比中项.
(Ⅰ)证明:数列{an}是等差数列;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)若c1=$\frac{3}{2}$,当n≥2时cn=$\frac{1}{{b}_{n-1}+1}$+$\frac{1}{{b}_{n-1}+2}$+…+$\frac{1}{{b}_{n}}$,{cn}的前n项和为Tn,求证:对任意n≥2,都有12Tn≥6n+13.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-2x},x≤-1}\\{2x+2,x>-1}\end{array}\right.$,则f[f(-2)]=34,不等式f(x)≥2的解集为(-∞,-1]∪[0,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

6.设全集U={n∈N|1≤n≤10},A={1,3,4,5,8},B={1,3,4,6,9},则A∩B={1,3,4},(∁UA)∩B={6,9}.

查看答案和解析>>

科目: 来源: 题型:选择题

5.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,设h(x)=|f(x-1)|+g(x-1),则下列结论中正确的是(  )
A.h(x)关于(1,0)对称B.h(x)关于(-1,0)对称C.h(x)关于x=1对称D.h(x)关于x=-1对称

查看答案和解析>>

同步练习册答案