相关习题
 0  246262  246270  246276  246280  246286  246288  246292  246298  246300  246306  246312  246316  246318  246322  246328  246330  246336  246340  246342  246346  246348  246352  246354  246356  246357  246358  246360  246361  246362  246364  246366  246370  246372  246376  246378  246382  246388  246390  246396  246400  246402  246406  246412  246418  246420  246426  246430  246432  246438  246442  246448  246456  266669 

科目: 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}}\right.(α为参数)$,直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{3}{5}t}\\{y=4+\frac{4}{5}t}\end{array}(t为参数)}\right.$.以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的直角坐标方程和直线l的极坐标方程;
(2)若P(x,y)为曲线C上的动点,求点P到直线l的距离d的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=lnx-ax+$\frac{1-a}{x}$+1
(1)当a=$\frac{1}{4}$时,求函数y=f(x)的极值;
(2)当$a∈(\frac{1}{3},1)$时,若对任意实数b∈[2,3],当x∈(0,b]时,函数f(x)的最小值为f(b),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知抛物线 C:y2=2px(p>0),过焦点且斜率为1的直线m交抛物线C于A,B两点,以线段AB为直径的圆在y轴上截得的弦长为$2\sqrt{7}$.
(1)求抛物线C的方程;
(2)过点P(0,2)的直线l交抛物线C于F、G两点,交x轴于点D,设$\overrightarrow{PF}={λ_1}\overrightarrow{FD},\overrightarrow{PG}={λ_2}\overrightarrow{GD}$,试问λ12是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知等差数列{an}的公差d=$\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,a42-a22=56;等比数列{bn}满足:b1=1,b2b4b6=512,n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)设{an}的前n项和为Sn,令cn=$\left\{{\begin{array}{l}{\frac{2}{S_n},n为奇数}\\{{b_n},n为偶数}\end{array}}$,求c1+c2+c3+…+c2n

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,且|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=4,M为线段BC上一点,且$\overrightarrow{AM}=λ\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|}}+μ\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|}}$(λ,μ∈R),则λμ的最大值为$\frac{15}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知实数x,y满足$\left\{{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}}\right.$,则目标函数z=3y-2x的最大值为9.

查看答案和解析>>

科目: 来源: 题型:填空题

8.(1-x)(x2+$\frac{1}{x}$)6的展开式中x4的系数是-20.

查看答案和解析>>

科目: 来源: 题型:选择题

7.设函数f(x)=x2lnx,$g(x)=\frac{x}{e^x}$,若存在x1∈[e,e2],x2∈[1,2],使得e3(k2-2)g(x2)≥kf(x1)成立(其中e为自然对数的底数),则正实数k的取值范围是(  )
A.k≥2B.0<k≤2C.$k≥\frac{{{e^3}+\sqrt{{e^6}+8}}}{2}$D.$0<k≤\frac{{{e^3}+\sqrt{{e^6}+8}}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1、F2,点P(a,b)满足|F1F2|=|PF2|,设直线PF2与椭圆交于M、N两点,若|MN|=16,则椭圆的方程为(  )
A.$\frac{x^2}{144}+\frac{y^2}{108}=1$B.$\frac{x^2}{100}+\frac{y^2}{75}=1$C.$\frac{x^2}{36}+\frac{y^2}{27}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知$α∈(-\frac{π}{2},0),\;β∈(0,\;\frac{π}{4})$,$\frac{1}{2}-{sin^2}\frac{α}{2}=\frac{tanβ}{{1+{{tan}^2}β}}$,则有(  )
A.$2β-α=\frac{π}{2}$B.$2β+α=\frac{π}{2}$C.$2β-α=-\frac{π}{2}$D.$2β+α=-\frac{π}{2}$

查看答案和解析>>

同步练习册答案