相关习题
 0  246267  246275  246281  246285  246291  246293  246297  246303  246305  246311  246317  246321  246323  246327  246333  246335  246341  246345  246347  246351  246353  246357  246359  246361  246362  246363  246365  246366  246367  246369  246371  246375  246377  246381  246383  246387  246393  246395  246401  246405  246407  246411  246417  246423  246425  246431  246435  246437  246443  246447  246453  246461  266669 

科目: 来源: 题型:选择题

13.命题“对任意的x∈R,sinx≤1”的否定是(  )
A.不存在x∈R,sinx≤1B.存在x∈R,sinx≤1
C.存在x∈R,sinx>1D.对任意的x∈R,sinx>1

查看答案和解析>>

科目: 来源: 题型:选择题

12.为得到函数$y=sin(3x+\frac{π}{4})$的图象,只要把函数$y=sin(x+\frac{π}{4})$图象上所有的点(  )
A.横坐标缩短到原来的$\frac{1}{3}$倍,纵坐标不变
B.横坐标伸长到原来的3倍,纵坐标不变
C.纵坐标伸长到原来的3倍,横坐标不变
D.纵坐标缩短到原来的$\frac{1}{3}$倍,横坐标不变

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知集合U={1,2,3,4,5},A={1,2,3},B={2,4},则A∩(∁UB)=(  )
A.{2,4}B.{1,3}C.{1,2,3,5}D.{2,5}

查看答案和解析>>

科目: 来源: 题型:填空题

10.某锥体的三视图如图所示,则该几何体的体积为$\frac{8}{3}$,表面积为$6+2\sqrt{3}+4\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.设a,b为共轭复数,且$\frac{{a}^{2}}{b}$为实数,求$\frac{b}{a}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,它的一个顶点恰好是抛物线x2=4$\sqrt{2}$y的焦点.
(I)求椭圆C的方程;
(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.
(i)若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
(ii)当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

7.若函数f(x)=-lnx+ax2+bx-a-2b有两个极值点x1,x2,其中-$\frac{1}{2}<a<0$,b>0,且f(x2)=x2>x1,则方程2a[f(x)]2+bf(x)-1=0的实根个数为5.

查看答案和解析>>

科目: 来源: 题型:选择题

6.设函数f(x)的导函数为 f′(x),对任意x∈R都有f(x)>f′(x)成立,则(  )
A.3f(ln2)<2f(ln3)B.3f(ln2)=2f(ln3)
C.3f(ln2)>2f(ln3)D.3f(ln2)与2f(ln3)的大小不确定

查看答案和解析>>

科目: 来源: 题型:选择题

5.下列说法不正确的是(  )
A.若“p且q”为假,则p、q至少有一个是假命题
B.命题“?x0∈R,x02-x0-1<0”的否定是“?x0∈R,x02-x0-1≥0”
C.“$φ=\frac{π}{2}$”是“y=sin (2x+φ) 为偶函数”的充要条件
D.α<0时,幂函数y=xα在 (0,+∞) 上单调递减

查看答案和解析>>

科目: 来源: 题型:解答题

4.某市一所高中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].

(Ⅰ)求直方图中x的值;     
(Ⅱ)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿;     
(Ⅲ)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

同步练习册答案