相关习题
 0  246356  246364  246370  246374  246380  246382  246386  246392  246394  246400  246406  246410  246412  246416  246422  246424  246430  246434  246436  246440  246442  246446  246448  246450  246451  246452  246454  246455  246456  246458  246460  246464  246466  246470  246472  246476  246482  246484  246490  246494  246496  246500  246506  246512  246514  246520  246524  246526  246532  246536  246542  246550  266669 

科目: 来源: 题型:解答题

19.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率是$\frac{\sqrt{2}}{2}$,过点P(0,1)的动直线l与椭圆相交于A、B两点,当直线l平行于x轴时,直线l被椭圆E截得的线段长为2$\sqrt{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得$\frac{|QA|}{|QB|}=\frac{|PA|}{|PB|}$恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,A、B、C、D为平面四边形ABCD的四个内角.
(Ⅰ)证明:tan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$;
(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+tan$\frac{D}{2}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M、GH的中点为N.
(Ⅰ)请将字母F、G、H标记在正方体相应的顶点处(不需说明理由);
(Ⅱ)证明:直线MN∥平面BDH;
(Ⅲ)求二面角A-EG-M的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.某市A、B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(Ⅰ)求A中学至少有1名学生入选代表队的概率;
(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

15.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R,
(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;
(Ⅱ)若?x>0,f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.
(i)求|$\frac{OQ}{OP}$|的值;
(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.
(Ⅰ)写出所有个位数字是5的“三位递增数”;
(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.

查看答案和解析>>

科目: 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,已知2Sn=3n+3.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.
(Ⅰ)求证:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

10.设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为$\frac{\sqrt{5}}{10}$
(Ⅰ)求E的离心率e;
(Ⅱ)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为$\frac{7}{2}$,求E的方程.

查看答案和解析>>

同步练习册答案