相关习题
 0  246374  246382  246388  246392  246398  246400  246404  246410  246412  246418  246424  246428  246430  246434  246440  246442  246448  246452  246454  246458  246460  246464  246466  246468  246469  246470  246472  246473  246474  246476  246478  246482  246484  246488  246490  246494  246500  246502  246508  246512  246514  246518  246524  246530  246532  246538  246542  246544  246550  246554  246560  246568  266669 

科目: 来源: 题型:选择题

19.设x∈R,则“1<x<2”是“|x-2|<1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

18.阅读如图所示的程序框图,运行相应的程序,则输出i的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:选择题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}\right.$则目标函数z=3x+y的最大值为(  )
A.7B.8C.9D.14

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁UB=(  )
A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}的各项均为正数,bn=n(1+$\frac{1}{n}$)nan(n∈N+),e为自然对数的底数.
(1)求函数f(x)=1+x-ex的单调区间,并比较(1+$\frac{1}{n}$)n与e的大小;
(2)计算$\frac{{b}_{1}}{{a}_{1}}$,$\frac{{b}_{1}{b}_{2}}{{a}_{1}{a}_{2}}$,$\frac{{b}_{1}{{b}_{2}b}_{3}}{{a}_{1}{a}_{2}{a}_{3}}$,由此推测计算$\frac{{b}_{1}{b}_{2}…{b}_{n}}{{a}_{1}{a}_{2}…{a}_{n}}$的公式,并给出证明;
(3)令cn=(a1a2…an)${\;}^{\frac{1}{n}}$,数列{an},{cn}的前n项和分别记为Sn,Tn,证明:Tn<eSn

查看答案和解析>>

科目: 来源: 题型:解答题

14.某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W121518
P0.30.50.2
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

13.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ-3cosθ)=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$( t为参数),l与C相交于A,B两点,则|AB|=$2\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则$\frac{AB}{AC}$=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案