相关习题
 0  246375  246383  246389  246393  246399  246401  246405  246411  246413  246419  246425  246429  246431  246435  246441  246443  246449  246453  246455  246459  246461  246465  246467  246469  246470  246471  246473  246474  246475  246477  246479  246483  246485  246489  246491  246495  246501  246503  246509  246513  246515  246519  246525  246531  246533  246539  246543  246545  246551  246555  246561  246569  266669 

科目: 来源: 题型:解答题

9.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2$\sqrt{5}$,AA1=$\sqrt{7}$,BB1=2$\sqrt{7}$,点E和F分别为BC和A1C的中点.
(Ⅰ)求证:EF∥平面A1B1BA;
(Ⅱ)求证:平面AEA1⊥平面BCB1
(Ⅲ)求直线A1B1与平面BCB1所成角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3$\sqrt{15}$,b-c=2,cosA=-$\frac{1}{4}$.
(Ⅰ)求a和sinC的值;
(Ⅱ)求cos(2A+$\frac{π}{6}$)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽取的方法从这三个协会中抽取6名运动员组队参加比赛.
(Ⅰ)求应从这三个协会中分别抽取的运动员的人数;
(Ⅱ)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛.
(i)用所给编号列出所有可能的结果;
(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为$\frac{\sqrt{π}}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{6}$$\overrightarrow{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的值为$\frac{29}{18}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知a>0,b>0,ab=8,则当a的值为4时,log2a•log2(2b)取得最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为3.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{13}$=1B.$\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{3}$-y2=1D.x2-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

同步练习册答案