相关习题
 0  246405  246413  246419  246423  246429  246431  246435  246441  246443  246449  246455  246459  246461  246465  246471  246473  246479  246483  246485  246489  246491  246495  246497  246499  246500  246501  246503  246504  246505  246507  246509  246513  246515  246519  246521  246525  246531  246533  246539  246543  246545  246549  246555  246561  246563  246569  246573  246575  246581  246585  246591  246599  266669 

科目: 来源: 题型:选择题

17.已知函数f(x)=sinπx和函数g(x)=cosπx在区间[0,2]上的图象交于A,B两点,则△OAB面积是(  )
A.$\frac{3\sqrt{2}}{8}$B.$\frac{\sqrt{2}}{2}$C.$\frac{5\sqrt{2}}{8}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.如图,在棱长为a的正方体ABCD-A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上任意两点,且EF的长为定值b,则下面的四个值中不为定值的是(  )
A.点P到平面QEF的距离B.三棱锥P-QEF的体积
C.直线PQ与平面PEF所成的角D.二面角P-EF-Q的大小

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e,半焦距为c,B(0,1)为其上顶点,且a2,c2,b2,依次成等差数列.
(Ⅰ)求椭圆的标准方程和离心率e;
(Ⅱ)P,Q为椭圆上的两个不同的动点,且.kBP•kBQ=e2
(i)试证直线PQ过定点M,并求出M点坐标;
(ii)△PBQ是否可以为直角三角形?若是,请求出直线PQ的斜率;否则请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.设函数f(x)=lnx+$\frac{a}{x-1}$(a为常数)
(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求实数a的值;
(Ⅱ)若函数f(x)在(e,+∞)内有极值.求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若x1∈(0,1),x2∈(1,+∞).求证:f(x2)-f(x1)>e+2-$\frac{1}{e}$(注:e是自然对数的底数).

查看答案和解析>>

科目: 来源: 题型:解答题

13.抛物线C:x2=4y,直线l1:y=kx交C于点A,交准线于点M.过点M的直线l2与抛物线C有唯一的公共点B(A,B在对称轴的两侧),且与x轴交于点N.
(Ⅰ)求抛物线C的准线方程;
(Ⅱ)求S△AOB:S△MON的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在三棱锥P-ABC中,△ABC是边长为2的正三角形,∠PCA=90°,E,H分别为AP,AC的中点,AP=4,BE=$\sqrt{3}$.
(Ⅰ)求证:AC⊥平面BEH;
(Ⅱ)求直线PA与平面ABC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.设等差数列{an}的前n项和为Sn,公差为正整数d.若S32+a32=1,则d的值为1.

查看答案和解析>>

科目: 来源: 题型:选择题

10.在四棱柱ABCD-A1B1C1D1中,AA1⊥平面A1B1C1D1,底面A1B1C1D1是边长为a的正方形,侧棱AA1的长为b,E为侧棱BB1上的动点(包括端点),则(  )
A.对任意的a,b,存在点E,使得B1D⊥EC1
B.当且仅当a=b时,存在点E,使得B1D⊥EC1
C.当且仅当a≥b时,存在点E,使得B1D⊥EC1
D.当且仅当a≤b时,存在点E,使得B1D⊥EC1

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知x1,x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(Ⅰ)若x1=-1,x2=2,求函数f(x)的解析式;
(Ⅱ)若|x1|+|x2|=2$\sqrt{2}$,求实数b的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,$\frac{1}{2}$)到焦点的距离为1.
(Ⅰ)求抛物线C的方程
(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*
(ⅰ)记△AOB的面积为f(n),求f(n)的表达式
(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案