相关习题
 0  246436  246444  246450  246454  246460  246462  246466  246472  246474  246480  246486  246490  246492  246496  246502  246504  246510  246514  246516  246520  246522  246526  246528  246530  246531  246532  246534  246535  246536  246538  246540  246544  246546  246550  246552  246556  246562  246564  246570  246574  246576  246580  246586  246592  246594  246600  246604  246606  246612  246616  246622  246630  266669 

科目: 来源: 题型:填空题

14.已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=-7.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知在四棱锥S-ABCD中,底面ABCD是平行四边形,若SB⊥AC,SA=SC.
(1)求证:平面SBD⊥平面ABCD;
(2)若AB=2,SB=3,cos∠SCB=-$\frac{1}{8}$,∠SAC=60°,求四棱锥S-ABCD的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

12.在数列1,1,2,3,5,8,x,21,34,45中,x等于13.

查看答案和解析>>

科目: 来源: 题型:选择题

11.设非负实数x,y满足约束条件$\left\{\begin{array}{l}x+y-3{≤}_{\;}0{,}_{\;}\\ 2x+y-4{≥}_{\;}0\end{array}\right.$则z=2x+3y的最大值为(  )
A.4B.8C.9D.12

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆C1:$\frac{{x}^{2}}{2}$+y2=1和圆C2:x2+y2=1,A,B,F分别为椭圆C1左顶点、下顶点和右焦点.
(1)点P是曲线C2上位于第二象限的一点,若△APF的面积为$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$,求证:AP⊥OP;
(2)点M和N分别是椭圆C1和圆C2上位于y轴右侧的动点,且直线BN的斜率是直线BM斜率的2倍,证明直线MN恒过定点.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{14}{3}$B.4C.$\frac{10}{3}$D.3

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,F是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点,椭圆的离心率为$\frac{1}{2}$.A,B为椭圆的左顶点和上顶点,点C在x轴上,BC⊥BF,△BCF的外接圆M恰好与直线l1:x+$\sqrt{3}$y+3=0相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点C的直线l2与已知椭圆交于P,Q两点,且$\overrightarrow{FP}•\overrightarrow{FQ}$=4,求直线l2的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知直线l与圆锥曲线C相交于两点A,B,与x轴,y轴分别交于D、E两点,且满足$\overrightarrow{EA}={λ_1}\overrightarrow{AD}$$\overrightarrow{EB}={λ_2}\overrightarrow{BD}$
(1)已知直线l的方程为y=2x-4,抛物线C的方程为y2=4x,求λ12的值;
(2)已知直线l:x=my+1(m>1),椭圆C:$\frac{x^2}{2}+{y^2}$=1,求$\frac{1}{λ_1}+\frac{1}{λ_2}$的取值范围;
(3)已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0}),{λ_1}+{λ_2}=\frac{{2{a^2}}}{b^2}$,试问D是否为定点?若是,求点D的坐标;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在平面直角坐标系xoy中,设点P(x0,y0)为椭圆Γ:$\frac{x^2}{4}+\frac{y^2}{3}=1$上一点,过点P的直线${l_1}:\frac{{{x_0}x}}{4}+\frac{{{y_0}y}}{3}=1$交直线l2:x=4于点Q.
(1)证明:直线l1为椭圆Γ的切线;
(2)x轴上是否存在定点R,使得以PQ为直径的圆过定点R?若存在,求出R的坐标,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知直线l与圆锥曲线C相交于两点A,B,与x轴,y轴分别交于D、E两点,且满足$\overrightarrow{EA}={λ_1}\overrightarrow{AD}$ $\overrightarrow{EB}={λ_2}\overrightarrow{BD}$
(1)已知直线l的方程为y=2x-4,抛物线C的方程为y2=4x,求λ12的值;
(2)已知直线l:x=my+1(m>1),椭圆C:$\frac{x^2}{2}+{y^2}$=1,求$\frac{1}{λ_1}+\frac{1}{λ_2}$的取值范围;
(3)已知双曲线C:$\frac{{x}^{2}}{3}-{y}^{2}=1,{λ}_{1}+{λ}_{2}=6$,求点D的坐标.

查看答案和解析>>

同步练习册答案